• Title/Summary/Keyword: Flexible composite

Search Result 350, Processing Time 0.029 seconds

Experimental Investigation into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts (유연복합재 구동축의 동특성에 관한 실험 분석)

  • Shin, Eung-Soo;Lim, Byung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.123-126
    • /
    • 2005
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A testrig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spinup testings. It turns out that the analytic results are in good agreement with the experimental ones.

  • PDF

Flexible Liquid Crystal Displays Using Liquid Crystal-polymer Composite Film and Colorless Polyimide Substrate

  • Kim, Tae Hyung;Kim, Minsu;Manda, Ramesh;Lim, Young Jin;Cho, Kyeong Jun;Hee, Han;Kang, Jae-Wook;Lee, Gi-Dong;Lee, Seung Hee
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.66-71
    • /
    • 2019
  • Application of liquid crystal (LC) materials to a flexible device is challenging because the bending of LC displays easily causes change in thickness of the LC layer and orientation of LCs, resulting in deterioration in a displayed image quality. In this work, we demonstrate a prototype device combining a flexible polymer substrate and an optically isotropic LC-polymer composite in which the device consists of interdigitated in-plane switching electrodes deposited on a flexible colorless polyimide substrate and the composite consisting of nano-sized LC droplets in a polymer matrix. The device can keep good electro-optic characteristics even when it is in a bending state because the LC orientation is not disturbed in both voltage-off and -on states. The proposed device shows a high potential to be applicable for future flexible LC devices.

Highly flexible dielectric composite based on passivated single-wall carbon nanotubes (SWNTs)

  • Jeong, Hyeon-Taek;Kim, Yong-Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.40-47
    • /
    • 2015
  • Single-walled carbon nanotubes (SWNTs) was modified with various length of linear alkyl chains and passivated to form dielectric filler. The modified SWNTs embedded into epoxy matrix to fabricate a flexible composite with high dielectric constant. The dielectric behavior of the composite was significantly changed with various alkyl chain length(n) of pyrene. The dielectric constant of the epoxy/SWNTs composite significantly increased with respect to increase in length of alkyl chain at the frequency range from 10 to 105Hz (n=12and18).We also found that the passivated epoxy/SWNTs composite with high dielectric constant presented low dielectric loss. The resulted dielectric performances corresponded to de-bundling of nanotubes and their distribution behavior in the matrix in terms of tail length of alkyl pyrene in the passivation layer.

A Case Study of Flexible Sewer Pipes Behaviors - Compaction Ratio·Inner Deflection Ratiov·Ring Stiffness - (현장중심형 하수도용 연성관의 거동특성에 대한 고찰 - 다짐도·변형률·강성 간의 관계정립 -)

  • Kim, Young-Jin
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.31-38
    • /
    • 2013
  • As the Sewer Pipe is transformed by the expansion of life cycle as a result of the technology development, flexible pipe is developed by the transformed environmental conditions. To change pipe design, three phases(compaction ration - inner deflection ratio - ring stiffness) should be considered in design conditions. The input data of pipe design were provided by compaction-inner deflection ratio-ring stiffness. M oreover, The guidelines of sewerage pipes should be considered by flexible pipes design criteria.

The Forced Vibration Control of a Flexible Beam using PZT Actuator (PZT 액튜에이터를 이용한 유연한 보의 강제 진동제어)

  • 윤여흥;임숙정;권대규;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.275-278
    • /
    • 2001
  • Research on the forced vibration control of a flexible GFR composite beam using $\mu$-synthesis is performed on this paper. Modal analysis method and modal coordinates are introduced to obtain the state equations of the structural system. Using these equations, Robust control algorithm using $\mu$-synthesis is adopted to suppress the forced vibration of a flexible beam since the designed controller can considered plant uncertainty and external disturbance. Constant disturbance which is generated by shaking the flexible beam as I's natural frequency is effectively rejected by a PZT actuator. Simulations and experiments are carried out with the designed controller and effectiveness of forced vibration suppression strategy is verified by results.

  • PDF

Failure Mechanism of Cu/PET Flexible Composite Film with Anisotropic Interface Nanostructure

  • Park, Sang Jin;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.105-110
    • /
    • 2020
  • Cu/PET composite films are widely used in a variety of wearable electronics. Lifetime of the electronics is determined by adhesion between the Cu film and the PET substrate. The formation of an anisotropic nanostructure on the PET surface by surface modification can enhance Cu/PET interfacial adhesion. The shape and size of the anisotropic nanostructures of the PET surface can be controlled by varying the surface modification conditions. In this work, the effect of Cu/PET interface nanostructures on the failure mechanism of a Cu/PET flexible composite film is studied. From observation of the morphologies of the anisotropic nanostructures on plasma-treated PET surfaces, and cross-sections and surfaces of the fractured specimens, the Cu/PET interface area and nanostructure width are analyzed and the failure mechanism of the Cu/PET film is investigated. It is found that the failure mechanism of the Cu/PET flexible composite film depends on the shape and size of the plasmatreated PET surface nanostructures. Cu/PET interface nanostructures with maximal peel strength exhibit multiple craze-crack propagation behavior, while smaller or larger interface nanostructures exhibit single-path craze-crack propagation behavior.

Simultaneous precision positioning and vibration suppression of reciprocating flexible manipulators

  • Ma, Kougen;Ghasemi-Nejhad, Mehrdad N.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.13-27
    • /
    • 2005
  • Simultaneous precision positioning and vibration suppression of a reciprocating flexible manipulator is investigated in this paper. The flexible manipulator is driven by a multifunctional active strut with fuzzy logic controllers. The multifunctional active strut is a combination of a motor assembly and a piezoelectric stack actuator to simultaneously provide precision positioning and wide frequency bandwidth vibration suppression capabilities. First, the multifunctional active strut and the flexible manipulator are introduced, and their dynamic models are derived. A control strategy is then proposed, which includes a position controller and a vibration controller to achieve simultaneous precision positioning and vibration suppression of the flexible manipulator. Next, fuzzy logic control approach is presented to design a fuzzy logic position controller and a fuzzy logic vibration controller. Finally, experiments are conducted for the fuzzy logic controllers and the experimental results are compared with those from a PID control scheme consisting of a PID position controller and a PID vibration control. The comparison indicates that the fuzzy logic controller can easily handle the non-linearity in the strut and provide higher position accuracy and better vibration reduction with less control power consumption.

Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: A Monte Carlo simulation study

  • Wang, Ying;Wang, Guangke;Hu, Tao;Wen, Shipeng;Hu, Shui;Liu, Li
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1565-1570
    • /
    • 2020
  • Photons with the energy of 60 keV are regularly used for some kinds of bone density examination devices, like the single photon absorptiometry (SPA). This article reports a flexible and lightweight rare earth/polymer composite for enhancing shielding efficiency against photon radiation with the energy of 60 keV. Lead oxide (PbO) and several rare earth element oxides (La2O3, Ce2O3, Nd2O3) were dispersed into natural rubber (NR) and the photon radiation shielding performance of the composites were assessed using monte carlo simulation method. For 60 keV photons, the shielding efficiency of rare earthbased composites were found to be much higher than that of the traditional lead-based composite, which has bad absorbing ability for photons with energies between 40 keV and 88 keV. In comparison with the lead oxide based composite, Nd2O3-NR composite with the same protection standard (the lead equivalent is 0.25 mmPb, 0.35 mmPb and 0.5 mmPb, respectively), can reduce the thickness by 35.29%, 37.5% and 38.24%, and reduce the weight by 38.91%, 40.99% and 41.69%, respectively. Thus, a flexible, lightweight and lead-free rare earth/NR composite could be designed, offering efficient photon radiation protection for the users of the single photon absorptiometry (SPA) with certain energy of 60 keV.

Trajectory tracking and active vibration suppression of a smart Single-Link flexible arm using a composite control design

  • Mirzaee, E.;Eghtesad, M.;Fazelzadeh, S.A.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.103-116
    • /
    • 2011
  • This paper is concerned with the trajectory tracking and vibration suppression of a single-link flexible arm by using piezoelectric materials. The dynamics of a single flexible arm with PZT patches as sensor and actuator is derived using extended Hamilton's principle. Resulting equations show that the coupled beam dynamics including beam vibration and its rigid in-plane rotation takes place in two different time scales. By using singular perturbation theory, the system dynamics is divided into two subsystems. Then, a composite control scheme is elaborated that makes the orientation of the arm track a desired trajectory while suppressing its vibration. The proposed controller has two parts: one is a tracking controller designed for the slow (rigid) subsystem, and the other one is a stabilizing controller for the fast (flexible) subsystem. The outputs considered for the system are angular position of the hub and voltage of the sensor mounted on the structure. To avoid requiring further measurements of beam vibration and also angular velocity of the hub for the fast and slow control laws, respectively, two sliding mode observers for estimating the unknown states are also designed.

Formation of β-phase PVDF by Introduction of CNTs in the CNT/PVDF Composite Film and Resulting Improvement of Piezoelectric Performance (CNT의 도입에 의한 β-phase PVDF의 형성과 CNT/PVDF 복합막에서의 압전성능 개선)

  • Lim, Young-Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.712-715
    • /
    • 2016
  • In this paper, we fabricated flexible CNT/PVDF piezoelectric composite device by introducing CNTs (carbon nanotubes) into PVDF (poly-vinylidene fluoride) solution using spray coating technique. Flexible PEDOT:PSS conducting polymer was used as electrodes. We tried to improve the piezoelectric performance from the CNT/PVDF composite film by increasing the portion of the ${\beta}$-phase PVDF in the film. We confirmed the structural conformation of the CNT/PVDF composite film as a function of CNT concentration by using FT-IR (fourier transform infra-red). As increasing CNT concentration, portion of the ${\beta}$-phase PVDF and resulting piezoelectric performance increased in the CNT/PVDF composite film. We found that CNTs introduced were played as seeds for formation of the ${\beta}$-phase PVDF in the CNT/PVDF composite film and resulting improvement of the piezoelectric performance.