• Title/Summary/Keyword: Flexible composite

Search Result 351, Processing Time 0.035 seconds

Nonlinear analysis of interaction between flexible pile group and soil

  • Liu, Jie;Li, Q.S.;Wu, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.575-587
    • /
    • 2005
  • Using the nonlinear load transfer function for pile side soil and the linear load transfer function for pile end soil, a combined approach of the incremental load transfer matrix method and the approximate differential equation solution method is presented for the nonlinear analysis of interaction between flexible pile group and soil. The proposed method provides an effective approach for the solution of the nonlinear interaction between flexible pile group under rigid platform and surrounding soil. To verify the accuracy of the proposed method, a static load test for a nine-pile group under a rigid platform is carried out. The finite element analysis is also conducted for comparison purposes. It is found that the results from the proposed method match very well with those from the experimental test and are better in comparison with the finite element method.

Buckling Analysis of Thin-Walled Laminated Composite I-Beams Including Shear Deformation (전단변형을 고려한 적층복합 I형 박벽보의 좌굴해석)

  • Back, Sung Yong;Lee, Seung Sik;Park, Yong Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.575-584
    • /
    • 2006
  • In this paper, a shear-flexible finite element model is developed for the buckling analysis of axially loaded, thin-walled composite I-beams. Based on an orthogonal Cartesian coordinate system, the displacement fields are defined using the first-order shear-deformable beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, were developed to solve the governing equations. An inverse iteration with shift eigenvalue solution was used to solve the resulting linearized buckling problem. A parametric study was conducted to show the importance of shear flexibility and fiber orientation on the buckling behavior of thin-walled composite beams. A good agreement was obtained among the proposed shear-flexible model, other results available in literature, and the finite element solution.

Effects of Design Parameters of Steel-Embedded Precast Composite Piers (강재매입형 조립식 합성교각의 설계 변수 영향)

  • Shim, Chang-Su;Lim, Hyun-Sik;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.53-54
    • /
    • 2009
  • Steel-embedded composite piers provide flexible design alternatives to satisfy the required performance due to various design parameters of composite sections. For the fast construction of composite piers, bolt connection can be utilized for small size piers and post-tensioning to the pier segments for the large size piers. In this paper, experimental results on composite piers were investigated to evlauate the effects of design parameters on the behavior of composite piers. Appropriate sections and their integration methods were suggested according to the design conditions. For the modular construction of bridge piers, pier segments need to be divided considering their weight and careful considerations on details to adjust fabrication and construction error. Connection details for the pier cap were also proposed.

  • PDF

Vibration analysis of a pre-stressed laminated composite curved beam

  • Ozturk, Hasan
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.635-659
    • /
    • 2015
  • In this study, natural frequency analysis of a large deflected cantilever laminated composite beam fixed at both ends, which forms the case of a pre-stressed curved beam, is investigated. The laminated beam is considered to have symmetric and asymmetric lay-ups and the effective flexural modulus of the beam is used in the analysis. In order to obtain the pre-stressed composite curved beam case, an external vertical concentrated load is applied at the free end of a cantilever laminated composite beam and then the loading point of the deflected beam is fixed. The non-linear deflection curve of the flexible beam undergoing large deflection is obtained by the Reversion Method. The curved laminated composite beam is modeled by using the Finite Element Method with a straight-beam element approach. The effects of orientation angle and vertical load on the natural frequency parameter for the first four modes are examined and the results obtained are given in graphics. It has been found that the effect of the load parameter, which forms the curved laminated beam, on the natural frequency parameter, almost disappears after a certain value of the load parameter. This certain value differs for each laminated curved beam and each vibration mode.

Development of Carbon Composite Bipolar Plates for PEMFC (양성자 교환막 연료전지용 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.222-228
    • /
    • 2019
  • The proton exchange membrane fuel cell (PEMFC) system has many potential uses as an environmentally friendly power source. Carbon fiber composite bipolar plates are highly corrosion resistant and have high specific strength and stiffness in acidic environments, however, the relatively low electrical conductivity is a major issue which reduces the efficiency of PEMFC. In this study, electrically conductive particles (graphite powder and carbon black) are applied to carbon-epoxy composite prepregs to reduce the electrical resistance of the bipolar plates. The electrical resistance and mechanical properties are measured using conventional test methods, and a unit cell performance evaluation of developed carbon composite bipolar plates is performed to compare with the conventional bipolar plate.

Modeling and control of a flexible continuum module actuated by embedded shape memory alloys

  • Hadi, Alireza;Akbari, Hossein
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.663-682
    • /
    • 2016
  • Continuum manipulators as a kind of mechanical arms are useful tools in special robotic applications. In medical applications, like colonoscopy, a maneuverable thin and flexible manipulator is required. This research is focused on developing a basic module for such an application using shape memory alloys (SMA). In the structure of the module three wires of SMA are uniformly distributed and attached to the circumference of a flexible tube. By activating wires, individually or together, different rotation regimes are provided. SMA model is used based on Brinson work. The SMA model is combined to model of flexible tube to provide a composite model of the module. Simulating the model in Matlab provided a platform to be used to develop controller. Complex and nonlinear behavior of SMA make the control problem hard especially when a few SMA actuators are active simultaneously. In this paper, position control of the two degree of freedom module is under focus. An experimental control strategy is developed to regulate a desired position in the module. The simulation results present a reasonable performance of the controller. Moreover, the results are verified through experiments and show that the continuum module of this paper would be used in real modular manipulators.

Vibrations of an axially accelerating, multiple supported flexible beam

  • Kural, S.;Ozkaya, E.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.521-538
    • /
    • 2012
  • In this study, the transverse vibrations of an axially moving flexible beams resting on multiple supports are investigated. The time-dependent velocity is assumed to vary harmonically about a constant mean velocity. Simple-simple, fixed-fixed, simple-simple-simple and fixed-simple-fixed boundary conditions are considered. The equation of motion becomes independent from geometry and material properties and boundary conditions, since equation is expressed in terms of dimensionless quantities. Then the equation is obtained by assuming small flexural rigidity. For this case, the fourth order spatial derivative multiplies a small parameter; the mathematical model converts to a boundary layer type of problem. Perturbation techniques (The Method of Multiple Scales and The Method of Matched Asymptotic Expansions) are applied to the equation of motion to obtain approximate analytical solutions. Outer expansion solution is obtained by using MMS (The Method of Multiple Scales) and it is observed that this solution does not satisfy the boundary conditions for moment and incline. In order to eliminate this problem, inner solutions are obtained by employing a second expansion near the both ends of the flexible beam. Then the outer and the inner expansion solutions are combined to obtain composite solution which approximately satisfying all the boundary conditions. Effects of axial speed and flexural rigidity on first and second natural frequency of system are investigated. And obtained results are compared with older studies.

Development of flexible energy storage device based on reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) composite (환원된 그래핀/단일벽 탄소나노튜브 복합체를 이용한 플렉시블 에너지 저장 매체의 개발)

  • Yoo, Yeong Hwan;Cho, Jae Bong;Kim, Yong Ryeol;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.593-598
    • /
    • 2016
  • We report on the preparation of reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes deposited onto flexible polyethylene terephthalate (PET) via spray coating technique. The highest capacitance value of the unbent rGO/SWNTs electrode was $82Fg^{-1}$ in 1 M $H_2SO_4$ at $100mVs^{-1}$, which decreased to $38Fg^{-1}$ after 500 bending cycle. Further characterization, including galvanostatic charge/discharge measurements and electrochemical impedance spectroscopy (EIS), showed that the rGO/SWNTs electrode retained a well-defined capacitive response after repetitive bending cycle. Overall, the rGO/SWNTs composite electrode showed reasonable electrochemical properties even prolonged bending cycle. Approximately 50% of the initial capacitance for the rGO/SWNTs composite electrode is remained after 500 bending cycle, making the electrode a potential option for flexible energy storage applications.

Supercapacitive Properties of Polyaniline Electrode Electrodeposited on Carbon Nanotube/Acetonitrile-Butadiene Rubber as a Flexible Current Collector

  • Park, Jee-Hye;Kim, Sang-Hern;Ko, Jang-Myoun;Lee, Young-Gi;Kim, Kwang-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.211-215
    • /
    • 2011
  • Flexible sheets consisting of acrylonitrile-butadiene rubber (NBR) and carbon nanotube (CNT) are newly prepared varying the composition (CNT 20-25 wt.%) for use as a current collector of supercapacitor electrodes. The as-prepared CNT/NBR is electrodeposited with aniline using potentiodynamic cyclic voltammetry to yield a polyaniline (PANI)/CNT/NBR composite electrode. It is confirmed that the electrical conductivity of CNT/NBR current collector can be enhanced as the content of CNT increases. Cyclic voltammetry result shows that the sample of PANI/CNT(25 wt.%)/NBR composite achieves a maximum specific capacitance ($134.9\;F\;g^{-1}$) at $5\;mV\;s^{-1}$. Such supercapacitor application is possibly originated from the synergistic effects consisting of higher polarity of nitrile groups in NBR, conducting pathway of CNT, and electroactive property of PANI.

Characteristics of a Flexible Transparent Electrode based on a Silver Nanowire-polymer Composite Material with a Mesh Pattern Formed without Lithography (리소그래피 없이 제작된 그물망 구조의 은나노와이어-고분자화합물 복합소재 기반 유연 투명전극의 특성)

  • Park, Tae Gon;Park, Jong Seol;Park, Jin Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.11-17
    • /
    • 2020
  • In this study, a new method for fabricating flexible transparent electrodes based on silver nanowire-polymer (AgNW-PEDOT:PSS) composite materials having a mesh pattern formed by a solution-based process without lithography was proposed. By optimizing conditions such as the amount of ultraviolet (UV) photosensitizer injected into the suspension of AgNW and PEDOT:PSS, UV exposure time, and deionized (DI) washing time, a clear and uniform mesh pattern was obtained. For the fabricated AgNW-PEDOT:PSS-based mesh-type electrodes, characteristics such as electrical sheet resistance, light transmittance, haze, and bending flexibility were analyzed according to the mixing ratio of AgNW and PEDOT:PSS included in the suspension. The fabricated mesh electrodes typically exhibited a low electrical sheet resistance of less than 20 Ω/sq while maintaining a high transmittance of 80% or more. In addition, it was confirmed from the results of analyzing the effect of PEDOT:PSS on the characteristics of the mesh-type AgNW-PEDOT electrode that the optical visibility was greatly enhanced by reducing the surface roughness and haze, and the bending flexibility was remarkably improved.