• 제목/요약/키워드: Flexible analysis

Search Result 2,431, Processing Time 0.038 seconds

Vortex-induced reconfiguration of a tandem arrangement of flexible cylinders

  • Lee, Sang Joon;Kim, Jeong Jae;Yeom, Eunseop
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.25-40
    • /
    • 2015
  • Oscillating motions of flexible cylinders are associated to some extent with the aerodynamic response of plants. Tandem motions of reeds with flexible stems in a colony are experimentally investigated using an array of flexible cylinders made of polydimethylsiloxane (PDMS). Consecutive images of flexible cylinders subjected to oncoming wind are recorded with a high-speed camera. To quantify oscillating motions, the average bending angle and displacement of flexible cylinders are evaluated using point-tracking method and spectral analysis. The tandem motions of flexible cylinders are closely related to the flow characteristics around the cylinders. Thus, the dynamic motions of a tandem arrangement of flexible cylinders are investigated with varying numbers of cylinders arranged in-line, numbers of cylinders in a group (behaving like a single body), and Reynolds numbers (Re). When the number of cylinders in a group increases, the damping effect caused by the support of downstream cylinders is pronounced. These results would be provide useful information on the tandem-arranged design of complex structures and energy harvesting devices.

Study on Application of Flexible Die to Sheet Metal Forming Process (가변금형의 박판 성형공정 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

An Analysis of Flexible Unit-Type Apartments in terms of Unit Plans (가변형 공동주택의 단위평면 구성에 따른 가변유형 분석)

  • Cho, Il-A;Kim, Hyung-Woo
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.1 s.60
    • /
    • pp.65-72
    • /
    • 2007
  • Various residential patterns, which can accommodate ever-changing modem lifestyles, are increasingly needed. On the residents' demand for flexible space, mote research should be conducted on the apartments built by the concept of flexible space. In this study, apartments of 40-60 pyeong in size built in the region of Seoul, between 1998 and 2007, are analyzed in terms of the flexible types and the unit plan composition. To reflect the changes in people's perception of residential quality-preference for a residence with a good view, over for the direction that a residence faces, more rooms are placed on the front bay. From the analyses of this study, flexible unit plans are classified into 6 types; and it was found that, as the size of apartments gets larger, the livingroom and the dinning room tend to be placed on the front bay. After grouping rooms with a similar function into the spatial zones of the master bedroom, children's room, the livingroom, and the dinning room, flexible types are analyzed in terms of the location of rooms. The results of this study will be able to contribute to establishing flexible housing culture that can accommodate the changing needs of residents.

Effects of Flexible Pole Training Combined with Lumbar Stabilization on Trunk Muscles Activation in Healthy Adults

  • Lim, Jae-Heon
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Objective: This study aimed to determine the efficacy of flexible pole training combined with lumbar stabilization in improving trunk muscle activities and to investigate the difference according to posture in young adults. Methods: Twenty-five participants were enrolled in this study. The subjects were randomly allocated into either the flexible pole group or the rigid pole group. Participants performed lumbar stabilization exercises on quadruped and curl-up, with the flexible pole or rigid pole. Electromyography was used to assess the percent maximal voluntary isometric contracion (%MVIC) of the rectus abdominis (RA), external oblique (EO), internal oblique (IO), and erector spine (ES) muscles. All participants completed one 30-minute session per day, 3 days per week, for 6 weeks. The evaluation was performed before and 6 weeks after the training, and follow-up. The data were analyzed using independent t-test and two-way repeated measure analysis of variance to determine the statistical significance. Results: The flexible pole in curl-up showed significant differences in EO and IO muscle activities compared with the rigid pole. The flexible pole in quadruped showed significant differences in IO and ES muscle activities compared with the rigid pole. The RA, EO, IO, and ES muscle activities of both groups were significantly higher after 6 weeks training. Conclusion: The flexible pole in curl-up and quadruped showed an improvement in trunk muscle activation. The flexible pole combined with lumbar stabilization will be useful as an exercise tool to improve activity of trunk muscles.

Design Algorithm of Flexible Propeller by Fluid-Structure Interactive Analysis (유체-구조 반복해석법에 의한 유연 프로펠러의 설계 알고리듬 개발)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.528-533
    • /
    • 2012
  • Flexible composite propellers are subject to large deformation under heavy loading, and hence the hydrodynamic performance of deformed propeller might deviate from that of the metallic propeller under negligible deformation. To design the flexible propeller, it is therefore necessary to be able to evaluate the structural response of the blades to the hydrodynamic loadings, and then the influence of the blade deformation upon the hydrodynamic loadings. We use the lifting-surface-theory-based propeller analysis and design codes in solving the hydrodynamic problem, and the finite-element-method program formulated with 20-node iso-parametric solid elements for the analysis of the structural response. The two different hydrodynamic and structural programs are arranged to communicate through the carefully-designed interface scheme which leads to the derivation of the geometric parameters such as the pitch, the rake and the skew distributions common to both programs. The design of flexible propellers, suitable for manufacturing, is shown to perform the required thrust performance when deformed in operation. Sample design shows the fast iteration scheme and the robustness of the design procedure of the flexible propellers.

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.

Numerical Study on Flexible Forming Process for Sheet Metal (박판용 가변성형공정의 수치적 연구)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.281-284
    • /
    • 2009
  • Flexible forming process for sheet metal using reconfigurable die is introduced based on numerical simulation. Numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. Elastic cushion which has high resilience behavior from excessive deformation are inserted between forming punches and blank material for smoothing the forming surface which has discrete due to characteristics of the flexile die. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation. Formability in view of surface defect such as onset of dimple is compared with regard to various punch sizes. Consequently, it is confirmed that the flexible forming process for sheet material has appropriate capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming process.

  • PDF

Usefulness Verification for Flexible Stretch Forming Process using finite Element Method (유한요소법을 이용한 가변 스트레치 성형공정의 적합성 검증)

  • Seo, Y.H.;Heo, S.C.;Park, J.W.;Song, W.J.;Ku, T.W;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.241-244
    • /
    • 2009
  • This paper deals with a usefulness verification of stretch forming process using flexible die. The stretch forming method is widely used in aircraft and high-speed train industries for manufacturing of skin structure, which is made of sheet metal. A great number of solid dies are originally used and developed for specific shapes with respect to different curvature radii of the skin structures. Accordingly, flexible stretch forming process is proposed in this study. It replaces the conventional solid dies with a set of height adjustable discrete punches. A usefulness of the flexible die is verified through extensive numerical simulations of the stretch forming process for simply curved sheet plate. The elastic recovery is considered and formability evaluations are conducted through a comparison of symmetry plane configurations.

  • PDF

The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어)

  • 권세현;이형기;최부귀
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

Simulation of a Maglev Vehicle Running on the Flexible Guideway (유연궤도를 고려한 자기부상열차 주행 시뮬레이션)

  • Han Hyung-Suk;Kim Young-Joong;Shin Byung-Chun;Kwon Jeong-Il
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.499-503
    • /
    • 2006
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated flexible guideways comprised of steel, aluminum and concrete. Therefore, an analysis of the dynamic interaction between the Maglev vehicle and the flexible guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the vehicle. This study introduces a dynamic interaction simulation technique that applies structural dynamics. Because the proposed method uses detailed 3D FE models, it is useful to analyze the deformation of the elevated flexible guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated and validated. From the result of the study, we concluded that the simulation of dynamic interaction between the Maglev vehicle and the flexible guideway is possible and a potential of using computational mechanics.