• Title/Summary/Keyword: Flexible Shape

Search Result 445, Processing Time 0.025 seconds

Development of Flange Flexible Urethane-key Coupling (플랜지 플렉시블 우레탄카 커플링 개발)

  • Cho, Young-Tae;Lee, Ki-Yong;Lee, Choong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.667-671
    • /
    • 2010
  • The study was aimed at developing a power transmission coupling that is possible to transfer power without any trouble even if the two rotating shafts are making minute misalignment. The coupling that has been developed is Flange Flexible Urethane-key Coupling that connects two shafts by flanges with Urethane-key. A model coupling for use in transmitting power of 10hp was made and undergone performance evaluation and tests. Property and usefulness was proved through the test. The performance evaluation has demonstrated a property of $11.25Kgf{\cdot}m$ of allowable torque and 28.25hp of power at 1,80Orpm, which was found to be superior compared to the performance of similar couplings. Based on the performance test, study was made also for improving the shape of the Urethane-key and was successful to make the flange in smaller outside diameter. Further application test at site has proved that the product is easy to install and maintain, and has property of absorbing minute misalignment between two shafts and vibration caused there from.

Modeling of a Two Arm Flexible Robot in Gravity (중력장에서 두개의 탄성팔을 가지는 로보트의 모델링)

  • 오재윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1075-1088
    • /
    • 1992
  • This paper presents techniques used to model a two arm experimental robot. Both arms are compliant and the robot operates in a vertical plane and is therefore influenced by gravity. The robot is being built to study different control strategies for robots containing compliant members. The system is built with extremely flexible members. This limits the required bandwidth of the control electronics, and mimics the flexible motions that are observed for stiffer faster robots. The objective of this paper is to develop a reduced order model of the robot system and to experimentally validate the model. Validation requires that the model includes gravitational effects. Therefore, an assumed modes model is developed which facilitates modeling of gravitational effects. In order to select the order and mode shapes for the model, an analytical solution is derived for a linearized continuous model. This is compared to the assumed modes model to determine the number of mode shapes needed to model the system. The final model, which includes shortening effects, correlates very well with experimental results.

Study on Size Evaluation by Surface Expansion for Soft Polymer Foam (연질 고분자 발포체의 표면팽창을 통한 치수평가에 관한 연구)

  • Kim, Min-Woo;Cho, Chong-Rae;Kim, Myoung-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.63-68
    • /
    • 2019
  • The dimensional quality of flexible foams is often difficult to be evaluated through general machine vision inspection methods due to the free deformation of the outer shape. For the evaluation of the dimensions of flexible foams, methods of estimating the size of the product through the expansion rate of the product surface are evaluated. Specimens with various dimensions and surface gratings are prepared, and the degree of surface expansion is measured through machine vision. The correlation, between the measured surface grid size and the actual size of test specimens, is analyzed. We further analyze the correlation between the size of test specimens and the position of the surface grid. This study provides a basis for estimating the actual dimensions of specimens by measuring the surface expansion of flexible foams.

Extraction of the mode shapes of a segmented ship model with a hydroelastic response

  • Kim, Yooil;Ahn, In-Gyu;Park, Sung-Gun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.979-994
    • /
    • 2015
  • The mode shapes of a segmented hull model towed in a model basin were predicted using both the Proper Orthogonal Decomposition (POD) and cross random decrement technique. The proper orthogonal decomposition, which is also known as Karhunen-Loeve decomposition, is an emerging technology as a useful signal processing technique in structural dynamics. The technique is based on the fact that the eigenvectors of a spatial coherence matrix become the mode shapes of the system under free and randomly excited forced vibration conditions. Taking advantage of the simplicity of POD, efforts have been made to reveal the mode shapes of vibrating flexible hull under random wave excitation. First, the segmented hull model of a 400 K ore carrier with 3 flexible connections was towed in a model basin under different sea states and the time histories of the vertical bending moment at three different locations were measured. The measured response time histories were processed using the proper orthogonal decomposition, eventually to obtain both the first and second vertical vibration modes of the flexible hull. A comparison of the obtained mode shapes with those obtained using the cross random decrement technique showed excellent correspondence between the two results.

PID Control of a flexible robot rotating in vertical plane (수직면에서 회전운동을 하는 탄성로봇의 PID 제어)

  • Kang, Junwon;Oh, Chaeyoun;Kim, Kiho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.34-41
    • /
    • 1997
  • This paper presents a technique to control a very flexible robot moving in a vertical plane. The flexible robot is modeled as an Euler-Bernoulli beam. Elastic deformation is approximated using the assmed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID cnotrol tech- nique. The proportional, integral and deivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and no steady state error, and short settling time. The effectiveness of the developed control scheme is showed in the hub angular diaplacement control experiment. Three different end masses are uned in the experiment. The experimental results show that developed control algorithm is very effective showing little overshoot, no steady state error, and less than 2.5 second settl- ing time in case of having an end mass which is equivalent to 45% of the manipulator mass. Also the experimental results show that the residual vibration fo the end point is effectively controlled.

  • PDF

A Study on Base Isolation Performance and Phenomenological Model of E-Shape Steel Hysteretic Damper (E-Shape 강재이력댐퍼의 수치모델과 기초격리구조물의 지진응답)

  • Hwang, Inho;Ju, Minkwan;Sim, Jongsung;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.685-690
    • /
    • 2008
  • Recently, as large structures become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, a base isolation system using hysteretic damper is shown to effectively protect structures against earthquakes. A mechanical model is determined that can effectively portray the behavior of a typical E-shape device. Comparison with experimental results for a hysteretic damper indicates that the model is accurate over a wide range of operating conditions and adequate for analysis. The seismic performance of hysteretic dampers are studied and compared with the conventional systems as a base isolation system. A five-story building is modeled and the seismic performance of the systems subjected to three different earthquake is compared. The results show that the hysteretic damper system can provide superior protection than the other systems for a wide range of ground motions.

Buckling analysis of semi-rigid gabled frames

  • Rezaiee-Pajand, Mohammad;Shahabian, Farzad;Bambaeechee, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.605-638
    • /
    • 2015
  • It is intended to perform buckling analysis of steel gabled frames with tapered members and flexible connections. The method is based on the exact solutions of the governing differential equations for stability of a gabled frame with I-section elements. Corresponding buckling load and subsequently effective length factor are obtained for practical use. For several popular frames, the influences of the shape factor, taper ratio, span ratio, flexibility of connections and elastic rotational and translational restraints on the critical load, and corresponding equivalent effective length coefficient are studied. Some of the outcomes are compared against available solutions, demonstrating the accuracy, efficiency and capabilities of the presented approach.

A STUDY ABOUT MULTI-POINT RELIABILITY BASED DESIGN OPTIMIZATION OF FLEXIBLE WING (신뢰성을 고려한 유연 날개의 다점 최적 설계에 관한 연구)

  • Kim S.W.;Lee J.H.;Kwon J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.99-104
    • /
    • 2005
  • For the efficient reliability analysis, Bi-direction two-point approximation(BTPA) method is developed which solves shortcomings of conventional two-point approximation(TPA) methods that generate an approximate surface with low accuracy or sometimes do an unstable approximate surface. The conventional reliability based design optimization(RBDO) methods require high computational cost compared with the deterministic design optimization(DO) methods. To overcome the computational inefficiency of RBDO, the approximate reliability analysis approaches on the TPA surface are proposed. Using these FORM and SORM analysis strategies, multi-point aerodynamic-structure interacted shape design optimizations with uncertainty are performed very efficiently.

  • PDF

Grinding disk detection with image processing and application to face recognition (화상처리를 이용한 연삭공구 인식 및 안면인식 응용)

  • 백재용;송무건;유송민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.115-118
    • /
    • 2001
  • An image processing method was applied to characterize a shape of the flexible grinding disk. A disk surface image was taken by CCD camera. Depth of cut was changed to be 2 and 4mm. Circles marked on the disk were captured to extract the key features of the deflection. Notable correlation has been observed between the intervals and the process conditions. Same methodology has been applied to check the symmetry of the human face. Tentative results revealed that symmetry could be checked using the filtered face image.

  • PDF

The Vibration Control of a Opened Box Structure By a Neuro-Controller (신경망 제어기를 이용한 열린 박스 구조물의 진동 제어)

  • 신윤덕;장승익;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.983-987
    • /
    • 2003
  • Vibration causes noise and makes structure unstable. Especially, due to the effort of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance causes vibration and low damping ratio causes residual vibration lasts long time. In this paper, by using a neuro-controller, which is one of the algorithm of adaptive control. we performed adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a neuro-controller, is proved in its effectiveness by applying to a opened box structure. The neuro-controller was implemented with DSP, and the real-time adaptive vibration control experiment results confirm that neuro-controller is reliable.

  • PDF