• Title/Summary/Keyword: Flexible Printed Circuit

Search Result 103, Processing Time 0.032 seconds

Laser Cutting of Flexible Printed Circuit Board in Liquid (연성인쇄회로기판의 액중 레이저 절단)

  • Kim, Teakgu;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.56-62
    • /
    • 2013
  • The laser cutting process which is flexible and rapid usually provides a better result in cutting of flexible printed circuit boards (FPCB). However, circuit-short by the re-deposition of debris from laser ablation or its heat affect zone (HAZ) on the cutting surfaces can be a problem. A laser cutting process of FPCB in the presence of liquid can minimize these negative effects. The temperature distribution of copper and polymer parts of FPCB was analyzed with numerical simulation and the experimental results were presented to evaluate this process. Generally, laser cutting under liquid has advantages of less re-deposition of carbides and less HAZ on the cutting edges. However, bubble generation and laser beam control through the liquid media should be considered carefully to obtain a successful result.

Process Optimization for Flexible Printed Circuit Board Assembly Manufacturing

  • Hong, Sang-Jeen;Kim, Hee-Yeon;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • A number of surface mount technology (SMT) process variables including land design are considered for minimizing tombstone defect in flexible printed circuit assembly in high volume manufacturing. As SMT chip components have been reduced over the past years with their weights in milligrams, the torque that once helped self-centering of chips, gears to tombstone defects. In this paper, we have investigated the correlation of the assembly process variables with respect to the tombstone defect by employing statistically designed experiment. After the statistical analysis is performed, we have setup hypotheses for the root causes of tombstone defect and derived main effects and interactions of the process parameters affecting the hypothesis. Based on the designed experiments, statistical analysis was performed to investigate significant process variable for the purpose of process control in flexible printed circuit manufacturing area. Finally, we provide beneficial suggestions for find-pitch PCB design, screen printing process, chip-mounting process, and reflow process to minimize the tombstone defects.

Study on High Speed Laser Cutting of Rigid Flexible Printed Circuit Board by using UV Laser with Nano-second Pulse Width (자외선 나노초 펄스 레이저를 이용한 경연성(Rigid Flexible) 인쇄전자회로기판(Printed Circuit Board) 고속 절단에 관한 연구)

  • Bae, Han-Sung;Park, Hee-Chun;Ryu, Kwang-Hyun;Nam, Gi-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.20-24
    • /
    • 2010
  • High speed cutting processes of rigid flexible printed circuit board by making use of high power UV laser with nano-second pulse width have been proposed and investigated experimentally. Also robust laser cutting system has been designed and developed in order to obtain a good cutting quality of rigid and flexible PCB with multi-layers (2-6 layers). Power controller module developed for ourselves is adapted to control the laser output power in the range less than 1%. The systems show the good performance of cutting speed, cutting width and cutting accuracy, respectively. Especially we have confirmed that the short circuit problem due to the carbonized contamination occurred in cross section of multi-layers by thermal effect of high power laser has been improved largely by using multi-pass cutting process with low power and high speed.

One point detection electrocardiography sensor using MEMS and flexible printed circuit technology (MEMS 기술과 유연인쇄회로기판 기술을 이용한 단일지점 검침 심전도 센서)

  • Kim, Hong-Lae;Lee, Chung-Il;Lee, Chung-Keun;Lee, Myoung-Ho;Kim, Hyun-Jun;Choi, Eui-Jung;Kim, Yong-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.359-364
    • /
    • 2009
  • This paper presents flexible electrocardiography(ECG) sensors using micro electro mechanical systems(MEMS) and flexible printed circuit(FPC) technology. By using FPC technology, ECG sensors which consisted of an outer hook-shaped electrode and an inner circular-shaped electrode were fabricated on the polyimide substrate. Thereafter, the bipolar ECG sensor was miniaturized using MEMS technology. The ECG measurement capability was examined by attaching the sensor to the human chest and wrist. Performance of the proposed sensors was then compared with ECG measured by commercial Ag/AgCl electrodes. It was verified that ECG could be measured using proposed sensors at only single body.

Design of flexible assembly line for printed circuit board(PCB) manufacturing of amdahl company

  • Park, Kwangtae;Adiga, Sadashiv
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1992.04b
    • /
    • pp.159-168
    • /
    • 1992
  • 생산라인의 line balancing이 흐름생산에 있어서 일관된 생산을 하기 위한 필수조건이다. 여러 다양한 제품을 생산하는 printed circuit board(PCB) 공장에서의 line balancing을 얻기 위해서는 mixed model line balancing절차를 설명하고자 한다.

  • PDF

Novel Flexible Printed Circuit Windings for a Slotless Linear Motor Design

  • Hsu, Liang-Yi;Yan, Guo-Jhih;Tsai, Mi-Ching
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Linear motors has been developed for factory automation, transportation applications, among other applications. As the trend toward compact sizes in micro electronic products progresses, the required motor drives in these applications need to be downsized with increased power densities. It appears that the winding of miniature linear motors is the most awkward part to be scaled down from conventional motor designs when miniaturizing. This paper presents an alternative design for slotless linear motors. A novel flexible printed circuit winding has been applied to obtain a simplified but qualified result. Having explained the prototyping and inspection, a discussion is given to examine the achievement of this study.

Wireless Audio-visual Interface over UWB

  • Cui, Wei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1491-1494
    • /
    • 2008
  • Typically internal mobile LCD display modules are connected to the mobile product baseband PCB with flexible printed circuit board equipped with board-to-board connector. This solution has a drawback of limiting the product concept work to certain solutions that are based on connector size, location, flexible PCB length, bending, etc. in the display module. Also flexible printed circuit board based solutions are not completely optimized from reliability point of view, causing flex circuit board breakings. For the external displays in the PC or Home entertainment market, the cable solution is too expensive and resource demanding. The wireless solution has obvious advantages over reliability, low cost and flexibility. This paper describes a wireless audio-visual interface solution.

  • PDF

A RF MEMS Transmitter Based on Flexible Printed Circuit Boards (연성 인쇄 회로 기판을 이용한 초고주파 MEMS 송신기 연구)

  • Myoung, Seong-Sik;Kim, Seon-Il;Jung, Joo-Yong;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper presents the flexible MEMS transmitter based on flexible printed circuit board or FPCB, which can be transformed to arbitrary shape. The FPCB is suitable to fabricate light weight and small size modules with the help of its thin thickness. Moreover a module based on FPCB can be attached on the arbitrary curved surface due to its flexible enough to be lolled up like paper. In this paper, the flexible MEMS transmitter integrated on FPCB for a short-distance sensor network which is based on orthogonal frequency division multiplexing(OFDM) communication system is proposed. The active device of the proposed flexible MEMS transmitter is fabricated on InGaP/GaAs HBT process which has been used for power amplifier design to take advantages of high linear and high efficient characteristics. Moreover, the passive devices such as the filter and signal lines are integrated and fabricated on the FPCB board. The performance of the fabricated flexible MEMS transmitter is analyzed with EVM characteristics of the output signal.