• Title/Summary/Keyword: Flexible Plastic substrates

Search Result 112, Processing Time 0.029 seconds

Liquid Crystal Alignment Effect using in-situ Photoalignment on Flexible TN cell (In-situ 광배향법을 이용한 Flexible TN 셀의 액정배향 효과)

  • Nam, Ki-Hyung;Hwang, Jeoung-Yeon;Lee, Whee-Won;Choi, Myung-Gil;Suh, Dong-Hack;Kim, Young-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.506-509
    • /
    • 2004
  • We have investigated the generation of pretilt angle for a nematic liquid crystal (NLC) alignment with in-situ photoalignment method on polyimide (PI) surfaces using thin plastic substrates. The LC aligning capabilities and pretilt angle of the thin plastic substrates by in-situ photoalignment method were better than that of the glass substrate by general photoalignment. Also, the LC pretilt angle increased with increasing heating temperature and exposure time. And EO characteristics of photoaligned TN-LCDs using in-situ photodissociation method on glass substrate and on plastic substrate are also excellent.

  • PDF

Research Status on Flexible Electronics Fabrication by Metal Nano-particle Printing Processes (금속 나노입자 프린팅 공정을 이용한 유연전기소자 연구 현황)

  • Ko, Seung Hwan
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Flexible electronics are the electronics on flexible substrates such as a plastic, fabric or paper, so that they can be folded or attached on any curved surfaces. They are currently recognized as one of the most innovating future technologies especially in the area of portable electronics. The conventional vacuum deposition and photolithographic patterning methods are well developed for inorganic microelectronics. However, flexible polymer substrates are generally chemically incompatible with resists, etchants and developers and high temperature processes used in conventional integrated circuit processing. Additionally, conventional processes are time consuming, very expensive and not environmentally friendly. Therefore, there are strong needs for new materials and a novel processing scheme to realize flexible electronics. This paper introduces current research trends for flexible electronics based on (a) nanoparticles, and (b) novel processing schemes: nanomaterial based direct patterning methods to remove any conventional vacuum deposition and photolithography processes. Among the several unique nanomaterial characteristics, dramatic melting temperature depression (Tm, 3nm particle~$150^{\circ}C$) and strong light absorption can be exploited to reduce the processing temperature and to enhance the resolution. This opens a possibility of developing a cost effective, low temperature, high resolution and environmentally friendly approach in the high performance flexible electronics fabrication area.

Ink-Jet Printing of Conductive Silver Inks for Flexible Display Devices

  • Kim, Dong-Jo;Park, Jung-Ho;Jeong, Sun-Ho;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1491-1494
    • /
    • 2005
  • We have studied ink-jet printing method for patterning conductive line on flexible plastic substrates. Synthesized silver nano-particles of ${\sim}$20nm were used for the conductive ink and the printed patterns exhibit a smooth line whose linewidth is below 100 ${\mu}m$. This ink-jet printing technique can be applied to flexible displays and electronics.

  • PDF

Synthesis of Cardo Based Poly(arylene ether)s for Flexible Plastic Substrates and Their Properties

  • Kim, Moon-Ki;Kwon, Kyung-Jae;Han, Yang-Kyoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3311-3316
    • /
    • 2011
  • New poly(arylene ether)s (PAEs) with both transparency and heat-resistance were prepared by a polycondensation of FBPODS, an ordered-sequence aromatic dihalide, and cardo typed aromatic diols containing fluorene and/or adamantane moiety and also non-cardo typed 1,5-naphthalene diol. The resulting polymers had their glass transition temperatures ranged from 202 to $247^{\circ}C$. Based on TGA data, they exhibited excellent thermal stabilities, showing 5% weight loss at $434-487^{\circ}C$. They had low thermal expansion coefficients of 58-59 ppm at temperature range of $50-200^{\circ}C$ as well as good mechanical properties with moduli of 1757-2143 MPa. The optical transmittance for the PAE films was over 70% at 550 nm, except for the PAE that contains naphthalene moiety (30% at 550 nm). They also showed water uptake of about 0.68% regardless of their chemical compositions. Therefore, the newly developed PAEs show strong potential as plastic substrates for flexible devices for display, solar cell and e-paper.

Electro-mechanical Analyses of Thin Film Transistors for Flexible Displays

  • Saran, Neerja;Roh, Nam-Seok;Kim, Sang-Il;Lee, Woo-Jae;Kim, Jong-Seong;Hwang, Tae-Hyung;Hong, Seok-Joon;Kim, Myeong-Hee;Lim, Soon-Kwon;Souk, Jun-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.670-673
    • /
    • 2008
  • Good mechanical properties of thin-film transistors on plastic substrates are an essential parameter in the development of robust flexible displays. In this paper, a careful investigation is carried out on TFT backplane on plastic substrates under cyclic bending conditions. Bending modes of tensile and compressive as well as parallel and perpendicular orientation-dependent bending of channel have been analyzed carefully. This analysis will be helpful in knowing the electro-mechanical performance boundaries of the TFT devices so as to determine the bending limitations of our flexible displays.

  • PDF

Liquid Crystal Alignment Effect of Flexible Liquid Crystal Display with Low Temperature Alignment Layer (저온배향막을 이용한 Flexible 액정디스플레이의 액정 배향 효과)

  • Hwang, Jeoung-Yeon;Nam, Ki-Hyung;Kim, Jong-Hwan;Kim, Kang-Woo;Seo, Dae-Shik;Suh, Dong-Hack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.199-202
    • /
    • 2003
  • We have investigated the generation of pretilt angle for a nematic liquid crystal (NLC) alignment with rubbing alignment method on two kinds of polyimide (PI) surfaces using thin plastic substrates. The generated NLC pretilt angles on the pre-imidized type PI are about $3.8^{\circ}$ by the rubbing alignment method with thin plastic substrates, However, the pretilt angle measured at about $2.8^{\circ}$ lower on the polyamic acid type PI than by pre-imidized type PI surface with thin polymer film. The tilt angle increases as increasing curring temperature for making polyimide layer using polyamic acid type PI. It was concluded that pretilt angle in the polyimide surface is attributable to the increasing of imide rato.

  • PDF

Rubbing effect on orientation of Copper Phthalocyanine for flexible organic field-effect transistors

  • Kim, Hyun-Gi;Jang, Jung-Soo;Choi, Suk-Won;Ishikawa, Ken;Takezoe, Hideo;Kim, Sung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1319-1321
    • /
    • 2009
  • Copper phthalocyanine (CuPc) Field-effect transistors (FETs) was successfully fabricated on plastic substrates. Orientation of CuPc crystallites on substrate could be obtained via rubbing process. It was revealed that CuPc crystallites were perpendicularly aligned on PES substrates with the rubbing direction. The performance of FETs was affected by orientation of CuPc on rubbed substrates.

  • PDF

PDMS기판에 이온빔 처리에 따른 수평 액정의 배향 연구

  • Kim, Yeong-Hwan;O, Byeong-Yun;Kim, Byeong-Yong;Lee, Won-Gyu;Im, Ji-Hun;Na, Hyeon-Jae;Seo, Dae-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.159-159
    • /
    • 2009
  • We characterize a flexible self-assembled liquid crystal display (LCD) fabricated from a polyimide (PI) alignment layer with polydimethylsiloxane pixel walls. Ion beam (IB) irradiation aligned LC molecules in the PI layer and bonded two flexible plastic substrates in a one-step assembly of the pixel walls. X-ray photoelectron spectroscopic analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy provided chemical and physical evidence for the formation of stable chemical bonds between the PI layer and the PDMS pixel walls in addition to the important maintenance of a uniform 6 um gap between the two substrates without the use of any epoxy resins or other polymers.

  • PDF

Near $100^{\circ}C$ low temperature a-Si TFT array fabrication on 7 inch flexible PES substrates

  • Nikulin, Ivan V.;Hwang, Tae-Hyung;Jeon, Hyung-Il;Kim, Sang-Il;Roh, Nam-Seok;Shin, Seong-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.434-438
    • /
    • 2006
  • High-quality a-Si TFTs were fabricated on 7 inch plastic PES substrates at $130^{\circ}C$ and $100^{\circ}C$. It had been shown that the key factor for successful TFT fabrication on the relatively large plastic substrates is thorough control of total active layer's stress by means of deposition temperature reduction and single layer's intrinsic stress optimization.

  • PDF

Electro-Optical Characteristics on the flexible substrate using the Rubbing method (플렉시블 기판에 러빙법을 이용한 전기광학특성)

  • Lee, Whee-Won;Choi, Sung-Ho;Hwang, Jeoung-Yeon;Kang, Hyung-Ku;Bae, Yu-Han;Moon, Hyun-Chan;Kim, Jong-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.487-488
    • /
    • 2005
  • We have investigated the Electro-Optical Characteristics for a nematic liquid crystal (NLC) alignment with rubbing alignment method on polyimide surfaces using plastic substrates. It was found that monodomain alignment of NLC is obtained with rubbing alignment method on polyimide surfaces using thin plastic substrates. EO characteristics of the TN-LCD with a rubbed PI surface based on polymer are almost the same as that of the TN-LCD with a rubbed PI surface based on glass. However, the transmittances of the TN-LCD with a rubbed PI surface based on polymer is less than that with a rubbed PI surface based on glass.

  • PDF