• Title/Summary/Keyword: Flexible Linkage Mechanism

Search Result 8, Processing Time 0.025 seconds

Flexibility Analysis of 4-Bar Linkage Mechanism (4절 링크기구의 유연성 해석)

  • 조선휘;박종근;한성현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1365-1373
    • /
    • 1994
  • Elasto-dynamic deformation of flexible linkage mechanism was analyzed using the finite element method. A computer program was constructed and applied to analyze a specific crank-level 4-bar mechanism, in which the elasto-dynamic deformation of the mechanism system was obtained using mode superposition method in the case of constant input speed and the effect of geometric stiffness on the mechanism is included. Experimental verification of numerical results was conducted by measuring the elasto-dynamic deformation of mid-points of coupler and lever for the 4-bar lingkage mechanism using high speed camera and image data processing systeem. For the elasto-dynamic deformation at the lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones. However, the numerical results excluding geometric stiffness good agree with the experimental ones at the couper mid-point.

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism (1) Finite Element Analysis and Numerical Solution (4절 링크 기구의 동적 변형 해석 (I) 유한 요소 해석 및 수치해)

  • Cho, Sun-Whi;Park, Jong-Keun;Lee, Jin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.737-752
    • /
    • 1992
  • Analysis of elasto-dynamic deformation of flexible linkage mechanism is conducted using the finite element method. The equations of motion of the system are derived from the static structural problem in which dynamic inertia, gravitational and driving forces are treated as external loads. Linear spring model is included in the formulation of equation of motions to represent the effects of deformation of elastic bearings of revolute joints on the system behavior. A computer program is constructed and applied to analyze a specific crank-lever 4-bar mechanism. The algorithm of the program is as follows. First, the natural frequencies and the mode shapes of the system are calculated by solving the eigenproblem of the mechanism system which can be considered as a static structure by assuming the input shaft (crank shaft) to be fixed at any given configuration of mechanism. And finally, the elasto-dynamic deformation of the whole system is obtained using mode superposition method for the case of constant input speed. The effect of geometric stiffness on the mechamism is included in the program with the axial forces of links obtained through the quasi-static displacement analysis. It is found that the geometric stiffness exerts an important effect upon the elasto-dynamic behavior of the flexible linkage mechanism. Elastic deformation of bearing lowers the natural frequencies of the system, resulting smaller elastic displacement at the mid-point of the links and bigger elestic displacement at the ends of the links than rigid bearing. The above investigation of flexible linkage mechanism shows that the effects of the elastic deformation of bearing on the mechanism should be considered to design the mechanism which satisfies more preciously the purpose and the condition of design.

Percolation Approach to the Morphology of Rigid-Flexible Block Copolymer on Gas Permeability

  • 박호범;하성룡;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.69-70
    • /
    • 1997
  • Polyimides and related polymers, when synthesized from aromatic monomers, have generally rigid chain structures resulting in a low gas permeability. The rigidity of polymer chains reduces the segmental motion of chains and works as a good barrier against gas transport. To overcome the limit of use as materials of gas separation membranes due to low gas permeability, block copolymers with the incorporation of flexible segments like siloxane linkage and ether linkage have been studied. These block copolymers have microphase-separated structures composed of microdomains of flexible poly(dimethylsiloxane) or polyether segments and of rigid polyimides segments. In case of rigid-flexible block copolymers, the characteristics of both phases for gas permeation are of great difference. The permeation of gas molecules occurs favorably through microdomains of flexible segments, whereas those of rigid segments hinder the permeation of gas molecules. Accordingly the increase of content of flexible segments in a rigid polymer matrix will increase the gas permeability of the membrane linearly. However, this prediction does not satisfy enough many experimental results and in particular the drastic increase of the permeability is observed in a certain volume fraction. It was proposed that the gas transport mechanism is dominated by diffusion rather than gas solubility in a certain content of flexible phase if solution-diffusion mechanism is adopted. However, the transition from solubility-dependent to diffusion-dependent cannot be explained by the understanding of mechanism itself. Therefore, we consider an effective chemical path which permeable phase can form in a microheterogenous medium, and percolation concept is introduced to describe the permeability transition at near threshold where for the first time a percolation path occurs. The volume fraction of both phases is defined as V$_{\alpha}$ and V$_{\beta}$ in block copolymers, and the volume of $\beta$ phase in the threshold forming geometrically a traversing channel is defined as V$_{\betac}$. The formation mechanism of shortest chemical channel is schematically depicted in Fig. 1.

  • PDF

Vibration Control of Flexible Linkage Mechanisms Using Piezoelectric Films (압전필름이용 유연 링키지 메카니즘의 진동제어)

  • Choe, Seung-Bok;Jeong, Jae-Cheon;Gu, Bon-Gwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.2
    • /
    • pp.81-91
    • /
    • 1992
  • A control methodology for suppressing the elastodynamic responses of high-speed flexible linkage mechanisms is presented by adopting the concept of smart structures featuring piezoelectric films. The dynamic modeling of the proposed mechanism is accomplished by employing a finite element formulation which accounts for dynamic motion in both inertial and elastic coordinates. The dynamics of piezoelectric actuators and sensors bonded on the original flexible structure are developed for one-dimensional beam in conjunction with the modal analysis. The linear optimal controller which consists of a feedback control law and a Luenberger observer is employed. Numerical simulation is performed to evaluate the improvement of elastodynamic responses.

  • PDF

Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators

  • Akbari, Samin;Fallahi, Fatemeh;Pirbodaghi, Tohid
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.312-321
    • /
    • 2016
  • Dynamic behaviour of a slider-crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage.

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism(II) (4절 링크 기구의 동적 변형 해석 (II))

  • 조선휘;박종근;주동인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.910-923
    • /
    • 1992
  • Experimental verification of numerical results is conducted by measuring the dynamic strains of mid-points of the coupler and the lever for the 4-bar linkage mechanism with rigid bearing and flexible bearing, respectively. For the axial strain of lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones, however, the numerical results excluding geometric stiffness almost agree with the experimental ones for the axial strain of coupler mid-point. It is supposed that these phenomena should be caused by the fact that the motion of the coupler is more complicated than of the lever. The signals of dynamic strains of coupler and lever mid-points, measured by strain gages, are transformed into frequency domain by fast fourier transformer. From this experiment, the lst resonance frequencies of the coupler and the lever are obtained. It is made clear that the former almost agrees with the fundamental and the latter the 2nd mode natural frequency of the mechanism system calculated by numerical analysis.

The Regulatory Domain of Troponin C: To Be Flexible or Not To Be Flexible

  • Gagne, Stephane M.;Sykes, Michael T.;Sykes, Brain D.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.2
    • /
    • pp.131-140
    • /
    • 1998
  • The calcium-induced structural changes in the skeletal muscle regulatory protein troponin C (NTnC) involve a transition from a ‘closed’to an ‘open’structure with the concomitant exposure of a large hydrophobic interaction site for target proteins. Structural studies have served to define this conformational change and elucidate the mechanism of the linkage between calcium binding and the induced structural changes. There are now several structures of NTnC available from both NMR and X-ray crystallography. Comparison of the calcium bound structures reveals differences in the level of opening. We have considered the concept of a flexible open state of NTnC as a possible explanation for this apparent discrepancy. We also present simulations of the closed-to-open transition which are in agreement with the flexibility concept and with experimental energetics data.

  • PDF

Development of a Color Stereo Head-Eye System with Vergence (눈동자 운동이 가능한 컬러 스테레오 머리-눈 시스템의 개발)

  • HwangBo, Myung;You, Bum-Jae;Oh, Sang-Rok;Lee, Jong-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2370-2372
    • /
    • 1998
  • Recently we have developed an active stereo head-eye system with vergence, name it KIST HECter(Head-Eye System with Colored Stero Vision), based on the analysis of human's neck and eye motion at visual behavior. Our HECter is a five degree-of-freedom system composed of pan and tilt motion in neck part and independent vergence motion of binocular cameras and commonly shared elevation axis in eye part. And stereo vision Provides two color image, which are processed by powerful each TMS32080 vision board. The shape and size are designed to be almost same as human face. The ability to vergence has significant importance and gives many beneficial merits. On its mechanical implementation we adapt a non-parallelogram 4-bar linkage mechanism since it provides high accuracy in transfering motion and enables compact and flexible design.

  • PDF