• 제목/요약/키워드: Flexible Device

검색결과 675건 처리시간 0.025초

Design and Implementation of a Wearable LED Display Device

  • Shin, Seung-Hyeok
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권10호
    • /
    • pp.7-13
    • /
    • 2015
  • Wearable device, next generation smart device, is consistently growing. The flexible display will be a kind of display in the wearable device. The flexible display technology is now evolving with end-user requirement such as portability and easy installation. Previous wearable display products still have some difficulties in manufacturing and in flexibility whole device. But it can be a flexible display with LED device and utilized in commercial area. In this paper, we propose a driver to control the LED display and implement a flexible LED display system.

Ultrafast and flexible UV photodetector based on NiO

  • Kim, Hong-sik;Patel, Malkeshkumar;Kim, Hyunki;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.389.2-389.2
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

Two dimensional tin sulfide for photoelectric device

  • Patel, Malkeshkumar;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.389.1-389.1
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

형상 기억 유연 소자의 내구성 평가에 관한 연구 (Durability of the Flexible Shape Memory Device)

  • 양희경;김해진;김대은
    • 정보저장시스템학회논문집
    • /
    • 제11권2호
    • /
    • pp.36-40
    • /
    • 2015
  • The demand for flexible devices including solar cells, memories and batteries has increased rapidly over the past decades. In most flexible devices, polymer-based materials are used to enable the mechanical deformations such as bending or folding. Shape Memory Polymers (SMPs) is a high molecular compound polymer with flexibility and shape recovery characteristics. In this work, flexible shape memory device was fabricated by simply coating the conducting material, carbon nano-tube (CNT), on a shape memory polymer. Furthermore, durability of the device under various type of mechanical deformations was assessed. It is believed that the result of this work will aid in realization of a stretchable and wearable electronic device for practical applications.

디바이스 내장형 플렉시블 전자 모듈 제조 및 신뢰성 평가 (Fabrication and Reliability Test of Device Embedded Flexible Module)

  • 김대곤;홍성택;김덕흥;홍원식;이창우
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.84-88
    • /
    • 2013
  • These days embedded technology may be the most significant development in the electronics industry. The study focused on the development of active device embedding using flexible printed circuit in view of process and materials. The authors fabricated 30um thickness Si chip without any crack, chipping defects with a dicing before grinding process. In order to embed chips into flexible PCB, the chip pads on a chip are connected to bonding pad on flexible PCB using an ACF film. After packaging, all sample were tested by the O/S test and carried out the reliability test. All samples passed environmental reliability test. In the future, this technology will be applied to the wearable electronics and flexible display in the variety of electronics product.

유연성 소자용 금속 전극의 신뢰성 연구 동향 (Reliability of Metal Electrode for Flexible Electronics)

  • 김병준
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.1-6
    • /
    • 2013
  • Recently, various types of flexible devices such as flexible displays, batteries, e-skins and solar cell panels have been reported. Most of the researches focus on the development of high performance flexible device. However, to realize these flexible devices, the long-term reliability should be guaranteed during the repeated deformations of flexible devices because the direct mechanical stress would be applied on the electronic devices unlike the rigid Si-based devices. Among various materials consisting electronics devices, metal electrode is one of the weakest parts against mechanical deformation because the mechanical and electrical properties of metal films degrade gradually due to fatigue damage during repeated deformations. This article reviews the researches of fatigue behavior of thin metal film, and introduces the methods to enhance the reliability of metal electrode for flexible device.

Flexible Thermoelectric Device Using Thick Films for Energy Harvesting from the Human Body

  • Cho, Han Ki;Kim, Da Hye;Sin, Hye Sun;Cho, Churl-Hee;Han, Seungwoo
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.518-524
    • /
    • 2017
  • A flexible thermoelectric device using body heat has drawn attention as a power source for wearable devices. In this study, thermoelectric thick films were fabricated by cold pressing method using p-type antimony telluride and n-type bismuth telluride powders in accordance with specific loads. Thermoelectric thick films were denser and improved the electrical and thermoelectric properties while increasing the load of the cold pressing. The thickness of the specimen can be controlled by the amount of material; specimens were approximately 700 um in thickness. Flexible thermoelectric devices were manufactured by using the thermoelectric thick films on PI (Polyimide) substrate. The process is cheap, efficient, easy and scalable. Evaluation of power generation performance and flexibility on the fabricated flexible thermoelectric device was carried out. The flexible thermoelectric device has great flexibility and good performance and can be applied to wearable electronics as a power source.

후막 EL소자를 이용한 정보 표시형 Flexible 디스플레이 (The Flexible Information Display Using Powder Electroluminescent Device)

  • 이종찬;김현후;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권5호
    • /
    • pp.207-210
    • /
    • 2001
  • In this paper, the Flexible information display was implemented uing AC powder electroluminescent device. ZnS:Cu and $BaTiO_3$ were used as a phosphor and dielectric respectively. The growth of phosphor and dielectric layer was performed with screen printing. The flexible information display in this paper was categorized as following; EL display, driving circuit, software for driving. EL spectrum and brightness was measured as the device properties.

  • PDF