• Title/Summary/Keyword: Flexible

Search Result 9,812, Processing Time 0.04 seconds

The Effect of Thickness on Flexible, Electrical and Optical properties of Ti- ZnO films on Flexible Glass by Atomic Layer Deposition

  • Lee, U-Jae;Yun, Eun-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.196.1-196.1
    • /
    • 2016
  • TCO(Transparent Conducting Oxide) on flat glass is used in thin-film photovoltaic cell, flat-panel display. Nowadays, Corning(R) Willow Glass(R), known as flexible substrate, has attracted much attention due to its many advantages such as reliable roll-to-roll glass processing, high-quality flexible electronic devices, high temperature process. Also, it can be an alternative to flexible polymer substrates which have their poor stability and degradation of electrical and optical qualities. For application on willow glass, the flexibility, electrical, optical properties can be greatly influenced by the TCO thin film thickness due to the inherent characterization of thin film in nanoscale. It can be expected that while thick TCO layer causes poor transparency, its sheet resistance become low. Also, rarely reports were focusing on the influence of flexible properties by varying TCO thickness on flexible glass. Therefore, it is very important to optimize TCO thickness on flexible Willow glass. In this study, Ti-ZnO thin films, with different thickness varied from 0 nm to 50 nm, were deposited on the flexible willow glass by atomic layer deposition (ALD). The flexible, electrical and optical properties were investigated, respectively. Also, these properties of Ti-doped ZnO thin films were compared with un-doped ZnO thin film. Based on the results, when Ti-ZnO thin films thickness increased, resistivity decreased and then saturated; transmittance decreased. The Figure of Merit (FoM) and flexibility was the highest when Ti-ZnO thickness was 40nm. The flexible, electrical and optical properties of Ti-ZnO thin films were better than ZnO thin film at the same thickness.

  • PDF

Thin Film Transistor Backplanes on Flexible Foils

  • Colaneri, Nick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.529-529
    • /
    • 2006
  • Several laboratories worldwide have demonstrated the feasibility of producing amorphous silicon thin film transistor (TFT) arrays at temperatures that are sufficiently low to be compatible with flexible foils such as stainless steel or high temperature polyester. These arrays can be used to fabricate flexible high information content display prototypes using a variety of different display technologies. However, several questions must be addressed before this technology can be used for the economic commercial production of displays. These include process optimization and scale-up to address intrinsic electrical instabilities exhibited by these kinds of transistor device, and the development of appropriate techniques for the handling of flexible substrate materials with large coefficients of thermal expansion. The Flexible Display Center at Arizona State University was established in 2004 as a collaboration among industry, a number of Universities, and US Government research laboratories to focus on these issues. The goal of the FDC is to investigate the manufacturing of flexible TFT technology in order to accelerate the commercialization of flexible displays. This presentation will give a brief outline of the FDC's organization and capabilities, and review the status of efforts to fabricate amorphous silicon TFT arrays on flexible foils using a low temperature process. Together with industrial partners, these arrays are being integrated with cholesteric liquid crystal panels, electrophoretic inks, or organic electroluminescent devices to make flexible display prototypes. In addition to an overview of device stability issues, the presentation will include a discussion of challenges peculiar to the use of flexible substrates. A technique has been developed for temporarily bonding flexible substrates to rigid carrier plates so that they may be processed using conventional flat panel display manufacturing equipment. In addition, custom photolithographic equipment has been developed which permits the dynamic compensation of substrate distortions which accumulate at various process steps.

  • PDF

Seismic behaviors of twin tunnel with flexible segment (Flexible Segment가 설치된 병렬터널의 지진시 동적거동)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.695-702
    • /
    • 2015
  • Recently, the improvement of mechanical and theoretical issues in geo-centrifuge test enhances the applicability and accuracy of the test. Geo-centrifuge test is appropriate to simulate the behaviors of underground structures like tunnel, since tunnel interacts with the soil and/or rock around it and the test can embody the in-situ stress conditions effectively. In this study, the seismic behaviors of twin tunnel were analyzed based on geo-centrifuge test. Flexible segment to mitigate seismic acceleration were implemented in the model with thin and thick thickness. Based on the test results, it was found that flexible segment can decrease the peak acceleration generally, however, thin flexible segment was not able to reduce peak acceleration in short-period seismic wave. Thick flexible segment was more effective in case of high bedrock acceleration condition. Additionally, 3-dimensional numerical analysis was performed to verify the characteristics of seismic behavior and the effect of flexible segment. Consequently, the numerical analysis result showed good agreement with the test result.

Fused Deposition Modeling 3D Printing-based Flexible Bending Sensor (FDM 3D프린팅 기반 유연굽힘센서)

  • Lee, Sun Kon;Oh, Young Chan;Kim, Joo Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Recently, to improve convenience, flexible electronics are quickly being developed for a number of application areas. Flexible electronic devices comprise characters such as being bendable, stretchable, foldable, and wearable. Effectively manufacturing flexible electronic devices requires high efficiency, low costs, and simple processes for manufacturing technology. Through this study, we enabled the rapid production of multifunctional flexible bending sensors using a simple, low-cost Fused Deposition Modeling (FDM) 3D printer. Furthermore, we demonstrated the possibility of the rapid production of a range of functional flexible bending sensors using a simple, low-cost FDM 3D printer. Accurate and reproducible functional materials made by FDM 3D printers are an effective tool for the fabrication of flexible sensor electronic devices. The 3D-printed flexible bending sensor consisted of polyurethane and a conductive filament. Two patterns of electrodes (straight and Hilbert curve) for the 3D printing flexible sensor were fabricated and analyzed for the characteristics of bending displacement. The experimental results showed that the straight curve electrode sensor sensing ability was superior to the Hilbert curve electrode sensor, and the electrical conductivity of the Hilbert curve electrode sensor is better than the straight curve electrode sensor. The results of this study will be very useful for the fabrication of various 3D-printed flexible sensor devices with multiple degrees of freedom that are not limited by size and shape.

The Chip Bonding Technology on Flexible Substrate by Using Micro Lead-free Solder Bump (플렉서블 기반 미세 무연솔더 범프를 이용한 칩 접합 공정 기술)

  • Kim, Min-Su;Ko, Yong-Ho;Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.3
    • /
    • pp.15-20
    • /
    • 2012
  • In electronics industry, the coming electronic devices will be expected to be high integration and convergence electronics. And also, it will be expected that the coming electronics will be flexible, bendable and wearable electronics. Therefore, the demands and interests of bonding technology between flexible substrate and chip for mobile electronics, e-paper etc. have been increased because of weight and flexibility of flexible substrate. Considering fine pitch for high density and thermal damage of flexible substrate during bonding process, the micro solder bump technology for high density and low temperature bonding process for reducing thermal damage will be required. In this study, we researched on bonding technology of chip and flexible substrate by using 25um Cu pillar bumps and Sn-Bi solder bumps were formed by electroplating. From the our study, we suggest technology on Cu pillar bump formation, Sn-Bi solder bump formation, and bonding process of chip and flexible substrate for the coming electronics.

Vortex-induced reconfiguration of a tandem arrangement of flexible cylinders

  • Lee, Sang Joon;Kim, Jeong Jae;Yeom, Eunseop
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.25-40
    • /
    • 2015
  • Oscillating motions of flexible cylinders are associated to some extent with the aerodynamic response of plants. Tandem motions of reeds with flexible stems in a colony are experimentally investigated using an array of flexible cylinders made of polydimethylsiloxane (PDMS). Consecutive images of flexible cylinders subjected to oncoming wind are recorded with a high-speed camera. To quantify oscillating motions, the average bending angle and displacement of flexible cylinders are evaluated using point-tracking method and spectral analysis. The tandem motions of flexible cylinders are closely related to the flow characteristics around the cylinders. Thus, the dynamic motions of a tandem arrangement of flexible cylinders are investigated with varying numbers of cylinders arranged in-line, numbers of cylinders in a group (behaving like a single body), and Reynolds numbers (Re). When the number of cylinders in a group increases, the damping effect caused by the support of downstream cylinders is pronounced. These results would be provide useful information on the tandem-arranged design of complex structures and energy harvesting devices.

The Study on Flexible Embedded Components Substrate Process Using Bonding Film (Bonding Film을 이용한 Flexible 부품 내장형 기판 제작에 관한 연구)

  • Jung, Yeon-Kyung;Park, Se-Hoon;Kim, Wan-Joong;Park, Seong-Dae;Lee, Woo-Sung;Lee, Kyu-Bok;Park, Jong-Chul;Jung, Seung-Boo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.178-178
    • /
    • 2009
  • 전자제품의 고속화, 고집적화, 고성능이 요구되어짐에 따라 IC's 성능 향상을 통해 패키징 기술의 소형화를 필요로 하고 있어 소재나 칩 부품을 이용해 커패시터나 저항을 구현하여 내장시키는 임베디드 패시브 기술에 대한 연구가 많이 진행되어 지고 있다. 본 연구에서는 3D 패키징이 가능한 flexible 소재에 능, 수동 소자를 내장하기 위한 다층 flexible 기판 공정 기술에 대한 연구를 수행하였다. 기판제작을 위해 flexible 소재에 미세 형성이 가능한 폴리머 필름을 접착하였고 flexible 위에 후막 저항체 패턴을 퍼|이스트를 이용하여 형성하였다. 또한, 능동소자 내장을 위해 test chip을 제작하여 플립칩 본더를 이용해 flexible 기판에 접합한 후에 bonding film을 이용한 build up 공정을 통해 via를 형성하고 무전해 도금 공정을 거쳐 전기적인 연결을 하였다. 위의 공정을 통해 앓고 가벼울 뿐만 아니라 자유롭게 구부러지는 특성을 갖고 있는 능, 수동 소자 내장형 flexible 기판의 변형에 따른 전기적 특성을 평가하였다.

  • PDF

Study on Application of Flexible Die to Sheet Metal Forming Process (가변금형의 박판 성형공정 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

An Analysis of Flexible Unit-Type Apartments in terms of Unit Plans (가변형 공동주택의 단위평면 구성에 따른 가변유형 분석)

  • Cho, Il-A;Kim, Hyung-Woo
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.1 s.60
    • /
    • pp.65-72
    • /
    • 2007
  • Various residential patterns, which can accommodate ever-changing modem lifestyles, are increasingly needed. On the residents' demand for flexible space, mote research should be conducted on the apartments built by the concept of flexible space. In this study, apartments of 40-60 pyeong in size built in the region of Seoul, between 1998 and 2007, are analyzed in terms of the flexible types and the unit plan composition. To reflect the changes in people's perception of residential quality-preference for a residence with a good view, over for the direction that a residence faces, more rooms are placed on the front bay. From the analyses of this study, flexible unit plans are classified into 6 types; and it was found that, as the size of apartments gets larger, the livingroom and the dinning room tend to be placed on the front bay. After grouping rooms with a similar function into the spatial zones of the master bedroom, children's room, the livingroom, and the dinning room, flexible types are analyzed in terms of the location of rooms. The results of this study will be able to contribute to establishing flexible housing culture that can accommodate the changing needs of residents.