• Title/Summary/Keyword: Flavobacteriales

Search Result 11, Processing Time 0.019 seconds

A report of nine unrecorded bacterial species in the phylum Bacteroidetes collected from freshwater environments in Korea

  • Park, Sanghwa;Beak, Kiwoon;Han, Ji-Hye;Nam, Yoon-Jong;Lee, Mi-Hwa
    • Journal of Species Research
    • /
    • v.7 no.3
    • /
    • pp.187-192
    • /
    • 2018
  • During a comprehensive study of indigenous prokaryotic species in South Korea, nine bacterial species in the phylum Bacteroidetes were isolated from freshwater environmental samples that were collected from three major rivers in the Republic of Korea. High 16S rRNA gene sequence similarity (${\geq}98.7%$) and robust phylogenetic clades with the closely related species suggest that each strain was correctly assigned to an independent and predefined bacterial species. There were no previous reports of these nine species in Korea. Within the phylum Bacteroidetes, four species were assigned to the genus Flavobacterium, order Flavobacteriales, and five species to three genera of two families in the order Cytophagales. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are described in the species description section.

A report of seven unrecorded bacterial species in Korea, isolated from marine sediment

  • Chi Young Hwang;Eui-Sang Cho;Dong-Hyun Jung;Ki-Eun Lee;In-Tae Cha;Won-Jae Chi;Myung-Ji Seo
    • Journal of Species Research
    • /
    • v.12 no.2
    • /
    • pp.158-164
    • /
    • 2023
  • In March 2021, marine sediment from East Sea samples were suspended in a 2% NaCl solution, and serial dilution was performed in fresh marine and Reasoner's 2A agar. Isolated bacterial strains were identified based on 16S rRNA gene sequences, and showed at least 98.7% sequence similarity with previously reported bacterial species. Finally, seven bacterial strains which were validly published but not reported in Korea, were obtained. These isolates were allocated to the orders Bacillales and Flavobacteriales. The three Flavobacteriales strains are classified into the family Flavobacteriaceae. The other four Bacillales belong to the families Bacillaceae and Paenibacillaceae. The seven unrecorded bacterial strains in this study are classified into seven different genera, which are assigned to Mesobacillus, Paenibacillus, Gramella, Gillisia, Arenibacter, Fictibacillus, and Brevibacillus. During the investigation, the possibility of excavation of various unrecorded species in domestic marine sediment was confirmed. Gram-staining, cell morphology, physiological and basic biochemical characteristics, and phylogenetic analysis were performed in this study and provided in the description of each strain.

Diversity and Characteristics of Rhizosphere Microorganisms Isolated from the Soil around the Roots of Three Plants Native to the Dokdo Islands (독도의 자생식물의 근권에서 분리한 원핵 미생물의 다양성 분석)

  • Kim, Ye-Eun;Yoon, Hyeokjun;You, Young-Hyun;Kim, Hyun;Seo, Yeonggyo;Kim, Miae;Woo, Ju-Ri;Nam, Yoon-Jong;Irina, Khalmuratova;Lee, Gyeong-Min;Song, Jin-Ha;Jin, Young-Ju;Kim, Jong-Guk;Seu, Young-Bae
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.461-466
    • /
    • 2014
  • Three plant species, Aster sphathulifolius, Sedum oryzifolium, and Lysimachia mauritiana, native to the Dokdo Islands in South Korea, were examined for rhizosphere microorganisms by using 16S rDNA sequences. Nine species of rhizosphere microorganisms were isolated from the three native plant species, respectively. Phylogenetic analysis showed that the microorganisms could be classified into 19 species belonging to four phyla (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria), and the characteristics of the microbes were confirmed. Rhizosphere microorganisms from the six orders (Bacillales, Corynebacteriales, Flavobacteriales, Micrococcales, Oceanospirillales, and Rhodobacterales) were isolated from S. oryzifolium. From L. mauritiana, microbes belonging to the seven orders (Bacillales, Flavobacteriales, Micrococcales, Oceanospirillales, Rhizobiales, and Rhodobacterales) were isolated. From A. sphathulifolius, the six orders of rhizosphere microorganisms (Alteromonadales, Bacillales, Corynebacteriales, Flavobacteriales, Micrococcales, and Rhizobiales) were isolated. These data showed that Actinobacteria and Proteobacteria were the dominant phyla for the rhizosphere of all three plants. To confirm the bacterial diversity in rhizospheres, Shannon's diversity index (H') was used at the genus level. In these data, the rhizosphere from S. oryzifolium and L. mauritiana had more diverse bacteria compared to that from A. sphathulifolius.

A report of 21 unrecorded bacterial species of Korea belonging to the phylum Bacteroidota isolated in 2021

  • Chang-Jun Cha;Che Ok Jeon;Kiseong Joh;Wonyong Kim;Seung Bum Kim;Myung Kyum Kim;Jung-Hoon Yoon
    • Journal of Species Research
    • /
    • v.12 no.spc2
    • /
    • pp.23-32
    • /
    • 2023
  • During screening for indigenous prokaryotic species in Republic of Korea in 2021, a total of 21 bacterial strains assigned to the phylum Bacteroidota were isolated from a variety of environmental habitats including pine cone, seaweed, soil, sea sediment, brackish water and moss. Based on the 16S rRNA gene sequence similarity value of more than 98.7% and formation of a robust phylogenetic clade with the type strain of the closest bacterial species, it was found that the 21 strains belong to independent and recognized bacterial species. There has been no official report that the identified 21 species have been isolated in Republic of Korea up to date. Therefore, 16 species in six genera of two families in the order Flavobacteriales, two species in two genera of two families in the order Cytophagales, one species in one genus of one family in the order Chitinophagales and two species in one genus of one family in the order Sphingobacteriales are proposed as unrecorded species of the phylum Bacteroidota isolated in Republic of Korea. Their Gram reaction, colony and cell morphology, basic phenotypic characteristics, isolation source, taxonomic status, strain ID and other information are described in the species descriptions.

A report of 26 unrecorded bacterial species in Korea, belonging to the Bacteroidetes and Firmicutes

  • Kim, Haneul;Yoon, Jung-Hoon;Cha, Chang-Jun;Seong, Chi Nam;Im, Wan-Taek;Jahng, Kwang Yeop;Jeon, Che Ok;Kim, Seung Bum;Joh, Kiseong
    • Journal of Species Research
    • /
    • v.5 no.1
    • /
    • pp.166-178
    • /
    • 2016
  • An outcome of the study to discover indigenous prokaryotic species in Korea, a total of 26 bacterial species assigned to the classes Bacteroidetes and Firmicutes were isolated from diverse environmental samples collected from soil, tidal flat, freshwater, seawater, wetland, plant roots, and fermented foods. From the high 16S rRNA gene sequence similarity (>99.0%) and formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to each independent and predefined bacterial species. There is no official report that these 26 species have been described in Korea; therefore 14 strains for the order Flavobacteriales and two strains for the order Cytophagales were assigned to the class Bacteroidetes, and 8 strains for the order Bacillales and 4 strains for the order Lactobacillales were assigned to the class Firmicutes are reported for new bacterial species found in Korea. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are also described in the species description section.

A report of 29 unrecorded bacterial species belonging to the phylum Bacteroidetes in Korea

  • Cho, Sang Hyun;Yoon, Jung-Hoon;Kim, Seung-Bum;Jahng, Kwang-Yeop;Cho, Jang-Cheon;Joh, Ki-seong;Cha, Chang-Jun;Seong, Chi-Nam;Bae, Jin-Woo;Im, Wan-Taek;Jeon, Che Ok
    • Journal of Species Research
    • /
    • v.6 no.2
    • /
    • pp.119-128
    • /
    • 2017
  • Within a comprehensive, widescale investigation of indigenous prokaryotic species in Korea, 29 bacterial strains in the phylum Bacteroidetes were isolated from diverse environmental habitats that included soil, plant roots, natural caves, tidal flats, freshwater from lakes, and seawater. Based on their high 16S rRNA gene sequence similarities (>99.1%) and the formation of robust phylogenetic clades with the closest type species, each strain likely belonged to an independent and predefined bacterial species. There are no publications or official reports of the isolation of these 29 species in Korea. Our study provides strong evidence that seven species in three genera in the order Cytophagales, 15 species in 13 genera in the order Flavobacteriales and seven species in five genera in the order Sphingobacteriales, all within the phylum Bacteriodetes, are new reports of bacterial species in Korea. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are described in the species description section.

A report of 17 unrecorded bacterial species of Korea belonging to the phylum Bacteroidetes

  • Cho, Jang-Cheon;Seong, Chi Nam;Joh, Kiseong;Cha, Chang-Jun;Bae, Jin-Woo;Yi, Hana;Lee, Soon Dong;Kim, Myung Kyum;Yoon, Jung-Hoon
    • Journal of Species Research
    • /
    • v.7 no.3
    • /
    • pp.231-239
    • /
    • 2018
  • While screening indigenous prokaryotic species in Republic of Korea in 2017, a total of 17 bacterial strains assigned to the phylum Bacteroidetes were isolated from a variety of environmental habitats including water of fountain, tidal flat, plant root, soil, the gut of Russian grayling butterfly, ginseng field, seawater, lagoon and seashore sand. From the 16S rRNA gene sequence similarity of more than 98.7% and the formation of a robust phylogenetic clade with the closest species, it was found that the 17 strains belong to independent and recognized bacterial species. There has been no official report that the identified 17 species have been previously isolated in the Republic of Korea. Thus, 15 species in 10 genera of one family in the order Flavobacteriales, one species in one genus of one family in the order Cytophagales, and one species in one genus of one family in the order Sphingobacteriales are proposed as unrecorded species of the phylum Bacteroidetes found in the Republic of Korea. Gram reaction, colony and cell morphology, basic phenotypic characteristics, isolation source, taxonomic status, strain ID and other information are described in the species descriptions.

A report of 43 unrecorded bacterial species within the phyla Bacteroidetes and Firmicutes isolated from various sources from Korea in 2019

  • Kang, Heeyoung;Kim, Haneul;Yi, Hana;Kim, Wonyong;Yoon, Jung-Hoon;Im, Wan-Taek;Kim, Myung Kyum;Seong, Chi Nam;Kim, Seung Bum;Cha, Chang-Jun;Jeon, Che Ok;Joh, Kiseong
    • Journal of Species Research
    • /
    • v.10 no.2
    • /
    • pp.117-133
    • /
    • 2021
  • In 2019, 43 bacterial strains were isolated from food, soil, marine environments, human, and animals related sources from the Republic of Korea. Based on the analysis of 16S rRNA gene sequence, these isolates were allocated to the phyla Bacteroidetes and Firmicutes as unrecorded species in Korea. The 10 Bacteroidetes strains were classified into the families Bacteroidaceae, Chitinophagaceae, Cytophagaceae, Flavobacteriaceae, and Prolixibacteraceae (of the orders Bacteroidales, Chitinophagales, Cytophagales, Flavobacteriales, and Marinilabiliales, respectively). The 33 Firmicutes strains belonged to the families Bacillaceae, Paenibacillaceae, Planococcaceae, Staphylococcaceae, Clostridiaceae, Lachnospiraceae, Peptostreptococcaceae, Enterococcaceae, Lactobacillaceae, Leuconostocaceae, and Streptococcaceae (of the orders Bacillales, Clostridiales, and Lactobacillales). These unrecorded bacteria were determined based on taxonomic criterion (>98.7%; 16S rRNA gene sequence similarity). In addition, their phylogenetic affiliation, as well as cell and colony morphologies, staining reactions, and physiological and biochemical properties were investigated. Therefore, we report 43 isolates as unrecorded species, and described basic features, isolation source, and locations of these strains.

A report of 24 unrecorded bacterial species in Korea belonging to the Phyla Proteobacteria and Bacteroidetes isolated in 2020

  • Kim, Ju-Young;Yoon, Jung-Hoon;Joh, Kiseong;Seong, Chi-Nam;Kim, Won-Yong;Im, Wan-Taek;Cha, Chang-Jun;Kim, Seung-Bum;Jeon, Che-Ok;Seo, Taegun;Kim, Myung Kyum
    • Journal of Species Research
    • /
    • v.11 no.3
    • /
    • pp.133-142
    • /
    • 2022
  • In 2020, 24 bacterial strains were isolated from algae, kudzu leaf, mud, pine cone, seashore sand, sea water, soil, tidal flat, and wetland from the Republic of Korea. Isolated bacterial strains were identified based on 16S rRNA gene sequences, and those exhibiting at least 98.7% sequence similarity with known bacterial species, but not reported in Korea, were highlighted as unrecorded species. These isolates were allocated to the phyla Bacteroidetes and Proteobacteria as unrecorded species in Korea. The four Bacteroidetes strains were classified into the families Chitinophagaceae, Flavobacteriaceae, and Sphingobacteriaceae (of the orders Chitinophagales, Flavobacteriales, and Sphingobacteriales, respectively). The 20 Proteobacteria strains belonged to the Aeromonadaceae, Marinobacter, Microbulbiferaceae, Enterobacteriaceae, Erwiniaceae, Morganellaceae, Yersiniaceae, Lysobacteraceae, Halomonadaceae, Moraxellaceae, Pseudomonadaceae, Steroidobacteraceae, Xanthomonadaceae, and Myxococcaceae (of the orders Aeromonadales, Alteromonadales, Cellvibrionales, Enterobacterales, Lysobacterales, Oceanospirillales, Pseudomonadales, Steroidobacter, Xanthomonadales, and Myxococcales). This study focused on the description of 24 unreported bacterial species in Korea in the phyla Bacteroidetes and Proteobacteria belonging to six classes.

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.