• 제목/요약/키워드: Flat type plat

검색결과 3건 처리시간 0.017초

Experimental Study on Heat Transfer Performance of Absorber with Variable Plate Types

  • M.A. Sarker;Moon, C.G.;Lee, H.S.;Kim, E.P.;Yoon, J.I.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2004년도 춘계 학술발표회 논문집
    • /
    • pp.201-212
    • /
    • 2004
  • An experimental study of the absorption process of water vapor into a lithium bromide solution was performed. For the purpose of developing high performance absorption chiller/hater utilizing lithium bromide solution as working fluid, it is important to improve the performance of absorber with the larger heat transfer area of the four heat exchangers. The experimental apparatus was composed of a plate type absorber which could increase the heat exchange area per unit volume to investigate more detail characteristics instead of the conventional type, that is, horizontal tube bundle type. The size of plate absorbers were made for 0.4m$\times$0.6m and the design objective of a refrigeration capacity was 1RT. In this experiment, three kinds of plate absorbers namely flat plate, dimple plate and groove plate were used. The obtained results were less than the design objective values, that is, the refrigeration capacity was about 0.3 ~0.4RT and the overall heat transfer coefficient was 500~600 kcal/$m^2$h$^{\circ}C$ at the standard conditions.

  • PDF

20대 여성의 하반신 체형 관찰 (A Study on the Lower Body Somatotype of the 20s' Women)

  • 이연순;류지현
    • 한국의상디자인학회지
    • /
    • 제9권1호
    • /
    • pp.161-171
    • /
    • 2007
  • The purpose of this study was to classify the lower body of the lost women and to investigate the three-dimensional characteristics of each lower body somatotype of them. The subject were ninety seven women whose. age were twenties and whose height and bust girth were in the range of mean$\pm1\delta$ of typical body size of twenties' Korean women. The forty one variables of their lower body were measured by Martin's Anthropometric Instrument. And they were analyzed for mean, standard deviations factor analysis, and cluster analysis. In the second phase of analysis, the three participants were re-selected in each type were measured by Sliding Guage and analyzed their lower body somatotype. The results were as follows; The components of lower body of 20s' women were extracted with 7 factors through factor analysis and orthogonal rotation by the method of Varimax. The rate of the cumulative contribution was 84.1% the first factor was the thickness of lower body, the second factor was the vertical size of lower body the third factor was the front shape of hip, the forth factor was the vertical size of hip, the fifth factor was the shape of abdomen, the six factor was the flat-ratio of waist and the seventh factor was flat-ratio of hip. The somatotype of 20's women's lower body can be classified into 3 types. Type 1 is the standard somatotype of 20's women's lower body and the 34.0% of the participants in the study was categorized into type 1. Type 2 is a short and corpulency type with protruded abdomen and hip and the 29.9% of the participants in the study was categorized into type 2. And the type 3 is a tall and thin type with plat abdomen and hip and the 37.1% of the participants was categorized into type 3.

  • PDF

유속 및 열전대 위치의 영향을 고려한 열경계층 내부의 복합열전달 해석 (NUMERICAL ANALYSIS OF CONJUGATE HEAT TRANSFER INSIDE A THERMAL BOUNDARY LAYER CONSIDERING THE EFFECTS OF A FREE STREAM VELOCITY AND A THERMOCOUPLE POSITION)

  • 전병진;이주안;최형권
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.77-82
    • /
    • 2013
  • The error in measuring temperature profiles by thermocouple inside boundary layer mostly comes from the conduction heat transfer of the thermocouple. The error is not negligible when the conductivity of the thermocouple is very high. In this study, the effect of conduction heat transfer of the thermocouple on the temperature profile inside boundary layer was examined by considering both free-stream velocity and a thermocouple position. The conduction error of an E-type thermocouple was investigated by numerical analysis of three-dimensional conjugate heat transfer for various velocity profiles of boundary layer and thermocouple positions.