• Title/Summary/Keyword: Flat plate friction

Search Result 74, Processing Time 0.022 seconds

Study on the Skin-frictional Drag Reduction Phenomenon by Air Layer using CFD Technique (CFD 기법을 활용한 공기층에 의한 마찰항력 감소 현상 연구)

  • Kim, Hee-Taek;Kim, HyoungTae;Lee, Dong-Yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.361-372
    • /
    • 2019
  • The flow pattern of air layers and skin-friction drag reduction by air injection are investigated to find the suitable multiphase flow model using unstructured finite-volume CFD solver for the Reynolds-averaged Navier-Stokes equations. In the present computations, two different multiphase flow modeling approaches, such as the Volume of Fluid (VOF) and the Eulerian Multi-Phase (EMP), are adopted to investigate their performances in resolving the two-phase flow pattern and in estimating the frictional drag reduction. First of all, the formation pattern of air layers generated by air injection through a circular opening on the bottom of a flat plate are investigated. These results are then compared with those of MMkiharju's experimental results. Subsequently, the quantitative ratios of skin-friction drag reduction including the behavior of air layers, within turbulent boundary layers in large scale and at high Reynolds number conditions, are investigated under the same conditions as the model test that has been conducted in the US Navy's William B. Morgan Large Cavitation Channel (LCC). From these results, it is found that both VOF and EMP models have similar capability and accuracy in capturing the topology of ventilated air cavities so called'air pockets and branches'. However, EMP model is more favorable in predicting quantitatively the percentage of frictional drag reduction by air injection.

A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis (적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구)

  • Shin, Seong-Yun;Jung, Kwang-Hyo;Kang, Yong-Duck;Suh, Sung-Bu;Kim, Jin;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.

Prediction of Wall Shear Stresses in Transitional Boundary Layers Using Near-Wall Mean Velocity Profiles

  • Jeon, Woo-Pyung;Shin, Sung-Ho;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1305-1318
    • /
    • 2000
  • The local wall shear stress in transitional boundary layer was estimated from the near-wall mean velocity data using the principle of Computational Preston Tube Method(CPM). The previous DNS and experimental databases of transitional boundary layers were used to demonstrate the accuracy of the method and to provide the applicable range of wall unit y(sup)+. The skin friction coefficients predicted by the CPM agreed well with those from previous studies. To reexamine the applicability of CPM, near-wall hot-wire measurement were conducted in developing transitional boundary layers on a flat plate with different freestream turbulence intensities. The intermittency profiles across the transitional boundary layers were reasonably obtained from the conditional sampling technique. An empirical correlation between the representative intermittency near the wall and free parameter K$_1$of the extended wall function of CPM has been newly proposed using the present and other experimental data. The CPM has been verified as a useful tool to measure the wall shear stress in transitional boundary layer with reasonable accuracy.

  • PDF

Numerical Simulation of Locally-Forced Turbulent Boundary Layer (국소교란에 의한 난류 경계층 유동의 수치해석)

  • Ri, Gwang-Hun;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.96-107
    • /
    • 2001
  • An unsteady numerical simulation was performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer. The local forcing was given to the boundary layer flow by means of sinusoidally oscillating jet. A version of the unsteady $\kappa$-$\xi$-f(sub)u model (Rhee and Sung 2000) was employed. The Reynolds number based on the momentum thickness was about Re(sub)$\theta$=1700. The forcing frequency was varied in the range 0.011$\leq$f(sup)+$\leq$0.044 with a fixed forcing amplitude A(sub)o=0.4. The predicted results were compared and validated with the experimental data. It was shown that the unsteady locally-forced boundary layer flow is predicted well by the $\kappa$-$\xi$-f(sub)u model. The effect of the pitch angle of local forcing on the reduction of skin friction was also examined.

Large Eddy Simulation of Shock-Boundary Layer Interaction

  • Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.426-432
    • /
    • 2004
  • Large-Eddy Simulation (LES) is applied for the simulation of compressible flat plate boundary with Reynolds number up to 5 X 10$^{5}$ . Numerical examples include shock/boundary layer interaction and boundary layer transition, aiming future application to the analysis of transonic fan/compressor cascades. The present LES code uses hybrid com-pact/WENO scheme for the spatial discretization and compact diagonalized implicit scheme for the time integration. The present code successfully predicted the bypass transition of subsonic boundary layer. As for supersonic turbulent boundary layer, mean and fluctuation velocity of the attached boundary, as well as the evolution of the friction coefficient and the displacement thickness both upstream and downstream of the separation region are all in good agreement with experiment. The separation point also agreed with the experiment. In the simulation of the shock/laminar boundary layer interaction, the dependence of the transition upon the shock strength is reproduced qualitatively, but the extent of the separation region is overpredicted. These numerical examples show that LES can predict the behavior of boundary layer including transition and shock interaction, which are hardly managed by the conventional Reynolds-averaged Navier-Stokes approach, although there needs to be more effort before achieving quantitative agreement.

  • PDF

Effect of Horizontal Resistance at Slab Bottom on Behavior of Concrete Slabs-on-Grade under Vertical Loads (지반위에 놓인 콘크리트 슬래브의 수직하중에 대한 슬래브 하부의 수평 저항의 영향 분석)

  • Shim, Jae-Soo;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.141-150
    • /
    • 2005
  • The behavior of the concrete slabs-on-grade considering the horizontal resistance at the slab bottom, which exists due to the shear resistance of the foundation and the friction between the slab and the foundation, has been investigated when the slabs-on-grade are subjected to the vertical load. Analytical formulations have been developed to include the effect of the horizontal resistance at the slab bottom, and the solutions have been obtained in the transformed field domain using the Fourier transform. Finite element formulations have also been developed using the plate bending elements and the flat shell elements. The solutions from the analytical and numerical models have been compared and showed very good agreement. The sensitivity of the horizontal resistance to the stresses of the concrete slab has been investigated with various values of the slab thickness, elastic modulus, and vertical stiffness of the foundation. The analysis results show that the horizontal resistance at the plate bottom can significantly affect the stresses of the slab.

  • PDF

Analysis Models of Concrete Slabs-on-Grade Considering Horizontal Resistance at Slab Bottom and Behavior under Thermal Loads (슬래브 하부 수평저항을 고려한 지반위의 콘크리트 슬래브 해석 모델 및 온도하중에 의한 거동 분석)

  • Kim Seong-Min;An Zu-Og
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.271-282
    • /
    • 2006
  • The behavior of the concrete slabs on grade considering the horizontal resistance at the slab bottom, which exists due to the shear resistance of the foundation and the friction between the slab and the foundation, has been investigated when the slabs-on-grade are subjected to the thermal load. Analytical formulations have been developed to include the effect of the horizontal resistance at the slab bottom employing the thin plate on an elastic foundation that is widely used for the analysis of concrete slabs-on-grade and rigid pavement systems. Finite element formulations have then been developed using the plate bending elements and the flat shell elements. The solutions from the analytical and numerical models have been compared and showed very good agreement. The sensitivity of the horizontal resistance to the stresses of the concrete slab has been investigated with various values of the slab thickness, elastic modulus, and vortical stiffness of the foundation when subjected to the temperature gradient between the top and bottom of the slab and the uniform temperature drop throughout the slab depth. The analysis results show that the horizontal resistance at the plate bottom can significantly affect the stresses of the slab when the thermal loads are applied.

Characteristics of Wall Pressure over Wall with Permeable Coating (침투성 코팅 처리된 벽면 주위의 벽 압력 특성)

  • Song, Woo-Seog;Shin, Seung-Yeol;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1055-1063
    • /
    • 2012
  • Fluctuating wall pressures were measured using an array of 16 piezoelectric transducers beneath a turbulent boundary layer. The coating used in this experiment was an open-cell, urethane-type foam with a porosity of approximately 50 ppi. The ultimate objective of the coating is to provide a mechanical filter to reduce the wall pressure fluctuations. The boundary layer on the flat plate was measured by using a hot wire probe, and the CPM method was used to determine the skin friction coefficient. The wall pressure autospectra and streamwise wavenumber-frequency spectra were compared to assess the attenuation of the wall pressure field by the coating. The coating is shown to attenuate the convective wall pressure energy. However, the relatively rough surface of the coating in this investigation resulted in a higher mean wall shear stress, thicker boundary layer, and higher low-frequency wall pressure spectral levels compared to a smooth wall.

An analytical solution for the close-contact melting with vertical convection and solid-liquid density difference (종방향대류 및 고액밀도차가 고려된 접촉융해에 대한 해석해)

  • Yu, Ho-Seon;Hong, Hui-Gi;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1165-1173
    • /
    • 1997
  • The steady state close-contact melting phenomenon occurring between a phase change material and an isothermally heated flat plate with relative motion is investigated analytically, in which the effects of vertical convection in the liquid film and solid-liquid density difference are incorporated simultaneously. Not only the scale analysis is conducted to estimate a priori qualitative dependence of system variables on characteristic parameters, but also an analytical solution to a set of simplified model equations is obtained to specify the effects under consideration. These two results are consistent with each other, in that the vertical convection affects both the solid descending velocity and the film thickness, and that the density difference alters only the solid descending velocity. While the effect of vertical convection can be characterized conveniently by a newly introduced temperature gradient factor which asymptotically approaches the unity/zero with decreasing/increasing the Stefan number, that of density difference is represented by the liquid-to-solid density ratio. It is shown that the solid descending velocity depends linearly on the density ratio, and that the ratios of solid descending velocity, film thickness and friction coefficient to the conduction solution are proportional to 3/4, 1/4 and -1/4 powers of the temperature gradient factor, respectively. Also, established is the fact that the effect of convection can be legitimately neglected in the analysis for the range of the Stefan number less than 0.1.

Visualization of Microbubbles Affecting Drag Reduction in Turbulent Boundary Layer (마찰저항 감소에 영향을 주는 난류 경계층 내 미세기포(microbubble)의 가시화 연구)

  • Paik, Bu-Geun;Yim, Geun-Tae;Kim, Kwang-Soo;Kim, Kyoung-Youl;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.356-363
    • /
    • 2015
  • Microbubbles moving in the turbulent boundary layer are visualized and investigated in the point of frictional drag reduction. The turbulent boundary layer is formed beneath the surface of the 2-D flat plate located in the tunnel test section. The microbubble generator produces mean bubble diameter of 30 – 50 μm. To capture the micro-bubbles passing through the tiny measurement area of 5.6 mm2 to 200 mm2, the shadowgraphy system is employed appropriately to illuminate bubbles. The velocity field of bubbles reveals that Reynolds stress is reduced in the boundary layer by microbubbles’ activity. To understand the contribution of microbubbles to the drag reduction rate more, much smaller field-of-view is required to visualize the bubble behaviors and to find the 2-D void fraction in the inner boundary layer.