• Title/Summary/Keyword: Flat plate

Search Result 1,234, Processing Time 0.023 seconds

High-frequency Approximate Formulation for the Prediction of Broadband Noise of Airfoil Cascades with Inflow Turbulence (유입 난류에 의한 에어포일 캐스케이드 광대역 소음장의 고주파 근사 예측식의 개발)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Lee, Soogab;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1177-1185
    • /
    • 2005
  • This paper investigates the noise radiated by a cascade of flat-plate airfoils interacting with homogeneous, isotropic turbulence. At frequencies above the critical frequency, all wavenumber components of turbulence excite propagating cascade modes, and cascade effects are shown to be relatively weak. In this frequency range, acoustic power was shown to be approximately proportional to the number of blades. Based on this finding at high frequencies, an approximate expression is derived for the power spectrum that is valid above the critical frequency and which is in excellent agreement with the exact expression for the broadband power spectrum. The approximate expression shows explicitly that the acoustic Power above the critical frequency is proportional to the blade number, independent of the solidity, and varies with frequency as ${\phi}_{ww}(\omega/W$), where ${\phi}_{ww}$ is the wavenumber spectrum of the turbulence velocity and W is mean-flow speed. The formulation is used to perform a parametric study on the effects on the power spectrum of the blade number stagger angle, gap-chord ratio and Mach number. The theory is also shown to provide a close fit to the measured spectrum of rotor-stator interaction when the mean square turbulence velocity and length-scale are chosen appropriately.

Numerical Analysis of a Liquid Sheet Flow around a Simplified Sprinkler Head Using a CFD Model (CFD 모델을 이용한 단순 스프링클러 헤드 주위의 액막 유동해석)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.111-117
    • /
    • 2016
  • The present study examined the free surface flow of a liquid sheet near a sprinkler head using a Computational Fluid Dynamics (CFD) model and considered the feasibility of the empirical model for predicting the initial spray characteristics of the sprinkler head through a comparison of the CFD results. The CFD calculation for a simplified sprinkler geometry considering the nozzle and deflector were performed using the commercially available CFD package, CFX 14.0 with the standard $k-{\varepsilon}$ turbulence model and theVolume of Fluid (VOF) method. The predicted velocity of the empirical model at the edge of deflector were in good agreement with that of the CFD model for the flat plate region but there was a certain discrepancy between the two models for the complex geometry region. The mean droplet diameter predicted by the empirical model differed significantly from the measured value of the real sprinkler head. On the other hand, the empirical model can be used to understand the mechanism of droplet formation near the sprinkler head and predict the initial spray characteristics for cases without experimental data.

Visualization of Microbubbles Affecting Drag Reduction in Turbulent Boundary Layer (마찰저항 감소에 영향을 주는 난류 경계층 내 미세기포(microbubble)의 가시화 연구)

  • Paik, Bu-Geun;Yim, Geun-Tae;Kim, Kwang-Soo;Kim, Kyoung-Youl;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.356-363
    • /
    • 2015
  • Microbubbles moving in the turbulent boundary layer are visualized and investigated in the point of frictional drag reduction. The turbulent boundary layer is formed beneath the surface of the 2-D flat plate located in the tunnel test section. The microbubble generator produces mean bubble diameter of 30 – 50 μm. To capture the micro-bubbles passing through the tiny measurement area of 5.6 mm2 to 200 mm2, the shadowgraphy system is employed appropriately to illuminate bubbles. The velocity field of bubbles reveals that Reynolds stress is reduced in the boundary layer by microbubbles’ activity. To understand the contribution of microbubbles to the drag reduction rate more, much smaller field-of-view is required to visualize the bubble behaviors and to find the 2-D void fraction in the inner boundary layer.

A Study on Design and Performance of a Heat pipe for the Application to Solar Collector (태양열 집열기용 열파이프의 구조와 작동 특성에 관한 연구)

  • 임광빈;김철주
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.179-186
    • /
    • 1993
  • Heat pipes. applied to a flat plate solar collector, have a long and slender configuration with relatively low heat flux in the evaporator section. Such a heat pipe has a tendency to build-up a liquid pool at the lower part of the evaporator section. and at this pool occurs such complicated phenomena of evaporation and fluid dynamics as superheat, sudden generation of bubble, its likely explosive growth process and flooding, etc. In the present study. we tried to solve these problems by means of adjusting two principal design parameters, the liquid inventory and the installation region of the wick, using 4 heat pipes and 3 thermospheres. The corresponding results can be summarized as follows$\^$1)/. The effective thermal conductances of the heat pipe was greatly improved by eliminating the wick in the adiabatic and condenser sections$\^$2)/. The liquid inventory should be increased by about 40% larger than what is saturated the wick$\^$3)/. In the evaporator section the wick has a favorable effect to reduce both unstable operation by intermittent occurrence of nucleate boiling and response time at the initial start-up process.

  • PDF

A Numerical Study on the Effect of a Microfin with a Flexible Up-down Movement on Heat Transfer using a Fluid-structure Interaction (FSI) Method (양방향 유체-고체 연성해석을 통한 표면 위 미세날개의 진동이 열전달에 미치는 영향 분석)

  • Park, Ki-Hong;Min, June-Kee;Kim, Jin-Kyu;Kang, Seok-Hoon;Kim, Seong-Jin;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.975-983
    • /
    • 2011
  • A microfin on a heated surface and its effects of the heat transfer has been investigated. The thickness of the fin is about 8 micrometer to allow the flexible up-down motion of the fin. Two-way complete FSI (Fluid-Structure Interaction) method has been applied for the analysis. Firstly, the deformation of a microfin due to the pulsating flow is evaluated using structure analysis. The flow and temperature patterns are predicted by CFD (Computational Fluid Dynamics) method. At each time step, using the pressure force and temperature distribution from CFD, the deformation of the wing is evaluated by FEM. Also in order to estimate the resonance probability, the natural frequency of the wing structure is calculated by modal analysis. The proposed numerical procedure was validated through experiment using a single fin. Through this work, we show that the increase of 40% in heat transfer capacity using the microfin has been compared with that of flat plate case.

Effect of NaCl on Biofilm Formation of the Isolate from Staphylococcus aureus Outbreak Linked to Ham

  • Lee, Soomin;Choi, Kyoung-Hee;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.257-261
    • /
    • 2014
  • The objective of this study was to evaluate the effects of NaCl on the biofilm formations of the isolate from Staphylococcus aureus outbreaks linked to ham. The S. aureus ATCC13565 isolated from ham was exposed to NaCl concentrations of 0%, 2%, 4%, and 6% supplemented in tryptic soy broth (TSB) for 24 h at $35^{\circ}C$, followed by plating 0.1 mL of the culture on tryptic soy agar containing 0%, 2%, 4%, and 6% NaCl, respectively. After incubating at $35^{\circ}C$ for 24 h, the colonies on the plates were collected and diluted to $OD_{600}$ = 0.1. The diluents of S. aureus were incubated on a 96-well flat bottom plate containing TSB plus the appropriate NaCl concentrations, and the biofilm formation was quantified by crystal violet staining after being incubated at $35^{\circ}C$ for 9 h. Confocal laser scanning microscope (CLSM) was also used for visualizing the biofilm formation of S. aureus at NaCl concentrations of 0%, 2%, 4%, and 6%. The transcriptional analysis of biofilm-related genes, such as icaA, atl, clfA, fnbA, sarA, and rbf, was conducted by quantitative real-time PCR. Crystal violet staining and CLSM showed that the biofilm formations of S. aureus increased (p<0.05) along with the NaCl concentrations. Moreover, the expression of the icaA genes was higher at the NaCl concentrations of 4% and 6% as compared with 0% of NaCl by approximately 9-folds and 20-folds, respectively. These results indicated that the NaCl formulated in processed food may increase the biofilm formations of S. aureus by increasing the icaA gene expressions.

Study on Osteological Characteristics of Acanthorhodeus gracilis (가시납지리 (Acanthorhodeus gracilis)의 골격학적 연구(硏究))

  • Kim, Ik-Soo;Kim, In-Ja
    • Korean Journal of Ichthyology
    • /
    • v.10 no.2
    • /
    • pp.231-240
    • /
    • 1998
  • The characteristics of cranium, vertebral column and fin supports of Acanthorhodeus gracilis were examined. The fish did not have a fontanell in cranium nor process of supraethmoid. It had double orbitosphenoids and a basioccipital process developed from anterior portion of basioccipital. It had a high and triangular dorsal process on supraoccipital. In the urohyal, hypohyal attachment was bifurcated and horizontal and vertical plate were in an elongated rhombus shape with posterior edge pointed. It had teeth of 1-rowed, 5/5 and 4 free teeth. The fish did not have a coracoid foramen on shoulder girdle. It does not have a uroneural on ural centrum. It had a long and slender posterior process of pelvic bone. It had a large and flat supraneural. The fish had 14 or 15 interneural spines, of which the 1st, 2nd, 3rd and 4th had single basiosts and the rest had double basiosts. It had 11 or 12 interhemal spines, of which the 1st, 2nd, 3rd and 4th had single basiosts and the rest had double basiosts.

  • PDF

Meridional Circulations in a Sliced Cylinder (기울어진 회전 원판에 의한 원통형 용기내의 자오면 유동의 크기에 관한 연구)

  • KIM Jae Won;LIM Hong Sick
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.52-57
    • /
    • 1996
  • Mixing is most important for developing an electric washer which transforms angular momentum from rotating solid wall to laundry clothes inside it. For magnification of this mixing effect, some inventions are introduced to washing machine system, i. e., washing plate, washing rod, and even for washing cap in a model of a Korean manufacture. However, the previous efforts show dissatisfaction up till now. In this paper, a triumph to enhance mixing effects to increase washing performance is presented and verified by numerical investigation. The present model to simulate a washing tub is the simple circular cylinder with two endwall disks which is completely filled with a viscous liquid. The present improvement is to change mounting position of a bottom disk of the model cylinder. Therefore, the aim of this work just proposes a new idea, which is numerically inspected, to a producer of washing machine, In detail, this invention is alternating the mounting position of a rotating bottom disk. Actually skewed pulsator is placed in steady of a flat disk, so the two endwall disks at top and bottom are not in parallel. The angle between an inclined bottom disk and the horizontal plane is fixed as 5 degree and physical domain to consider poses a sliced cylinder. Flow fields in both a right circular cylinder and the present improved model are fully depicted by numerical integration on a body fitted nonorthogonal regular uniform grid system. Numerical data to explain flow structure are plotted for understanding of the effects of the inclined disk. Also enhanced mixing effects by the inclined rotating disk are gauged by accurate numerical data used in this work.

  • PDF

Experimental analysis of vortical structures in a turbulent layer using a dynamic PIV technique (Dynamic PIV를 이용한 난류경계층 내부 와구조 거동의 실험적 분석)

  • Choi, Yong-Seok;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.193-196
    • /
    • 2008
  • The vortical structures in a turbulent boundary layer (TBL) developed over a flat plate have been investigated experimentally. The flow conditions tested in this study were Re$_{\theta}$ = 3700, Re$_{\delta}$ = 11${\times}$105 and the shape factor H = 1.3. Instantaneous velocity fields in the streamwise-wall-normal planes were measured by using a dynamic PIV system. A trip-wire and sandpapers were placed behind the leading edge to promote the turbulent transition. 1000 velocity fields were obtained consecutively with a time interval of 1 millisecond. Streamwise u-velocity components were temporally averaged in the measuring plane. In addition, 2000 velocity fields were obtained randomly and ensemble-averaged to get the fully-developed turbulent characteristics. Profiles of the normalized u-component, turbulent intensities and Reynolds shear stress were evaluated. The structures of spanwise vortices were extracted from the instantaneous velocity fields by determining the swirling strength, ${\lambda}_{ci}$. The wall-normalized locations of vortices were temporally averaged in the measuring plane with respect to their rotational direction. The correlations between the temporally averaged u and the temporally averaged $y^+$ of vortices were evaluated. For the case of positive vortices, the correlation is not significant. However, the negative vortices show a strong negative correlation. The y-location of negative vortices tends to increase, as the averaged u decreases and vice versa. These findings indicate that the number of negative vortices in the outer layer increases during the outward bursting events.

  • PDF

Preparation of Rayon Filament based Woven Fabric and PCM Treatment for Developing Cool Touch Summer Clothing Material (여름철 냉감성 의류소재 개발을 위한 비스코스 레이온 중심의 직물 제조 및 PCM 가공)

  • Hong, Kyung Hwa
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.326-332
    • /
    • 2014
  • To develop cool touch feeling fabrics for summer clothing material, it was manufactured several compositions of woven fabrics, having rayon multi-filament yarn (non-twisted) as warp and various kinds of yarn, such as viscose rayon multi-filament yarn (twisted), tencel$^{(R)}$ spun yarn, PET high absorbance quick dry filament yarn, and PET based rayon-like yarn, as weft. After preparing the fabrics, basic properties of the fabrics were investigated, such as air-permeability, tensile strength, absorption rate, drying rate, etc. Also, surface warm / cool sensations of the woven fabrics were assessed by Qmax Warm / Cool Touch Tester. It was observed that the fabrics composed of viscose rayon multi-filament yarn (warp) and PET high absorbance quick dry filament yarn (weft) showed excellent surface cool touch sensation-the highest Qmax value. This is because the fabric having flat shaped PET high absorbance quick dry filament shows the largest contact area with Qmax measuring plate. And, the fabric also showed superior high absorbance and quick dry property as expected. In addition, we treated phase change material (PCM) on the surface of the fabric composed of viscose rayon multi-filament yarn (warp) and PET high absorbance quick dry filament yarn(weft) to improve the cool touch feeling. However, the surface cool touch feeling was impaired by resin treated with PCM during the finishing process.