• 제목/요약/키워드: Flat Panel

검색결과 754건 처리시간 0.029초

Percutaneous Sacroplasty : Effectiveness and Long-Term Outcome Predictors

  • Lee, Jaehyung;Lee, Eugene;Lee, Joon Woo;Kang, Yusuhn;Ahn, Joong Mo;Kang, Heung Sik
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권6호
    • /
    • pp.747-756
    • /
    • 2020
  • Objective : To evaluate the effectiveness and long-term outcome predictors of percutaneous sacroplasty (PSP). Methods : This single-center study assessed 40 patients with sacral insufficiency fractures using the short-axis technique under C-arm flat-panel detector computed tomography (CT). Two radiologists reviewed the patients' magnetic resonance and CT images to obtain imaging findings before PSP and determine technical success, respectively. The short-term outcomes were visual analog scale score changes and opioid usage reductions. Long-term outcomes were determined using telephone interviews and the North American Spine Society (NASS) patient-satisfaction index at least one year after PSP. Results : Technical success was achieved without any significant complications in 39 patients (97.5%). Telephone interviews were possible with 12 patients and failed in 10 patients; death was confirmed in 18 patients. Fifteen patients (50%) re-visited the hospital and received conservative treatment, including spinal injections. Nine patients reported positive satisfaction (NASS patient-satisfaction index 1 or 2), while the negative satisfaction group (NASS patient-satisfaction index 3 or 4, n=3) showed a higher incidence of compression fractures at the thoracolumbar spine level (66.7% vs. 22.2%) and previous spinal injection history (66.7% vs. 33.3%). The poor response group also showed higher incidences of facet joint arthrosis (100% vs. 55.6%), central canal stenosis (100% vs. 22.2%), neural foraminal stenosis (33.3% vs. 22.2%), scoliosis (100% vs. 33.3%), and sagittal malalignment (100% vs. 44.4%). Conclusion : PSP was effective for sacral insufficiency fractures and showed good long-term outcomes. Combined compression fractures in the thoracolumbar spine and degenerative lumbar pathologies could be possible poor outcome predictors.

Electrical Characterization of Amorphous Zn-Sn-O Transistors Deposited through RF-Sputtering

  • Choi, Jeong-Wan;Kim, Eui-Hyun;Kwon, Kyeong-Woo;Hwang, Jin-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.304.1-304.1
    • /
    • 2014
  • Flat-panel displays have been growing as an essential everyday product in the current information/communication ages in the unprecedented speed. The forward-coming applications require light-weightness, higher speed, higher resolution, and lower power consumption, along with the relevant cost. Such specifications demand for a new concept-based materials and applications, unlike Si-based technologies, such as amorphous Si and polycrystalline Si thin film transistors. Since the introduction of the first concept on the oxide-based thin film transistors by Hosono et al., amorphous oxide thin film transistors have been gaining academic/industrial interest, owing to the facile synthesis and reproducible processing despite of a couple of shortcomings. The current work places its main emphasis on the binary oxides composed of ZnO and SnO2. RF sputtering was applied to the fabrication of amorphous oxide thin film devices, in the form of bottom-gated structures involving highly-doped Si wafers as gate materials and thermal oxide (SiO2) as gate dielectrics. The physical/chemical features were characterized using atomic force microscopy for surface morphology, spectroscopic ellipsometry for optical parameters, X-ray diffraction for crystallinity, and X-ray photoelectron spectroscopy for identification of chemical states. The combined characterizations on Zn-Sn-O thin films are discussed in comparison with the device performance based on thin film transistors involving Zn-Sn-O thin films as channel materials, with the aim to optimizing high-performance thin film transistors.

  • PDF

고속 LVDS 응용을 위한 전송 접속 경로의 분석 및 설계 최적화 (Analysis and Design Optimization of Interconnects for High-Speed LVDS Applications)

  • 류지열;노석호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.761-764
    • /
    • 2007
  • 본 논문은 저전압 차동 신호 방식 (Low-Voltage Differential Signaling, LVDS)의 응용을 위한 차동 전송 접속 경로의 분석 및 설계 최적화 방법을 제안한다. 차동 전송 경로 및 저전압 스윙 방법의 발전으로 인해 LVDS 방식은 데이터 통신 분야, 고 해상도 디스플레이 분야, 평판 디스플레이 분야에서 매우 적은 소비전력, 개선된 잡음 특성 및 고속 데이터 전송률을 제공한다. 본 논문은 차동 flexible printed circuit board (FPCB) 전송선에서 선 폭, 선 두께 및 선 간격과 같은 전송선 설계 변수들의 최적화 기법을 이용하여 직렬 접속된 전송선들에서 발생하는 임피던스 부정합과 신호 왜곡을 감소시키기 위해 개선 모델과 새로이 개발된 수식을 제안한다. 이러한 차동 FPCB 전송선의 고주파 특성을 평가하기 위해 주파수 영역에서 full-wave 전자기 시뮬레이션, 시간 영역 시뮬레이션 및 S 파라미터 시뮬레이션을 각각 수행하였다.

  • PDF

Effect of the oxygen flow ratio on the structural and electrical properties of indium zinc tin oxide (IZTO) films prepared by pulsed DC magnetron sputtering

  • Son, Dong-Jin;Nam, Eun-Kyoung;Jung, Dong-Geun;Ko, Yoon-Duk;Choi, Byung-Hyun;Kim, Young-Sung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.168-168
    • /
    • 2010
  • Transparent conduction oxides (TCOs) films is extensively reported for optoelectronic devices application such as touch panels, solar cells, liquid crystal displays (LCDs), and organic light emitting diodes(OLEDs). Among the many TCO film, indium tin oxide(ITO) is in great demand due to the growth of flat panel display industry. However, indium is not only high cost but also its deposits dwindling. Therefore, many studies are being done on the transparent conductive oxides(TCOs). We fabricated a target of IZTO(In2O3:ZnO:SnO2=70:15:15 wt.%) reduced indium. Then, IZTO thin films were deposited on glass substrates by pulsed DC magnetron sputtering with various oxygen flow ratio. The substrate temperature was fixed at the room temperature. We investigated the electrical, optical, structural properties of IZTO thin films. The electrical properties of IZTO thin films were dependent on the oxygen partial pressure. As a result, the most excellent properties of IZTO thin films were obtained at the 3% of oxygen flow rate with the low resistivity of $7.236{\times}10^{-4}{\Omega}cm$. And also the optical properties of IZTO thin films were shown the good transmittance over 80%. These IZTO thin films were used to fabricated organic light emitting diodes(OLEDs) as anode and the device performances studied. The OLED with an IZTO anode deposited at optimized deposition condition showed good brightness properties. Therefore, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

Oxygen Ion Beam Deposition 법을 이용한 저온 ITO film에 Oxygen radical(O)이 미치는 영향에 대한 연구

  • 김정식;배정운;김형종;정창현;이내응;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.117-117
    • /
    • 2000
  • 높은 광학적 투과성과 전기전도성을 갖는 ITO film은 solar cell같은 optoelectronic device나 휴대용 소형 TV, flat panel display 등의 투명전극으로 그 응용 분야가 광범위하여 많은 연구가 수행되어져 왔다. 기판으로서 유리를 사용할 때 생기는 활용범위 제한을 극복하고자 최근 유기물 위에 증착이 가능한 저온 증착방법에 대한 연구가 활발히 이루어지고 있다. 그 가운데 이온빔과 같은 energetic한 beam을 이용한 박막의 제조는 기판을 플라즈마 발생지역으로부터 분리시켜 이온빔의 flux 및 에너지, 입사각 등의 자유로운 조절을 통해 상온에서도 우수한 성질의 박막형성 가능성이 제시되어 지고 있다. ITO박막을 형성하는 방법 중 스프레이법이나 CVD법과 같은 화학적 증착방법은 증착시 350-50$0^{\circ}C$의 고온이 필요하고 현재 가장 많이 응용되어 지고 있는 sputter법은 15$0^{\circ}C$정도의 가열이 필요하므로 앞으로 응용가능성이 매우 커서 많은 연구가 진행중인 플라스틱과 아크릴 같은 flexible 한 기판위 증착에 적용이 불가능하다. 본 실험에서는 IBAD(Ion Beam Assisted Deposition)법을 이용하여 저온 ITO film을 유리와 유기막위에 증착하는 연구를 수행하였다. 유기막위에 증착된 ITO는 보다 가볍고 충격에 강하고 유리에 못지 않은 투과성을 가지고 있으나 현재 film의 quality 향상에 대한 요구가 증대되어 지고 있는 실정이다. 따라서, 본 실험에서는 dual oxygen ion gun의 조건변화에 따른 ITO film의 특성변화를 관찰하였다. 고정된 증?율에 한 개 ion gun에 ion flux를 고정시킨 후 또 다른 ion gun에서 발생하는 oxygen radical의 영향을 조사하였으며 oxygen radical의 rf power에 따른 변화는 OES(Optical emission spectroscopy)를 사용하였다. 너무 적은 oxygen ion beam flux나 oxygen radical은 film의 전도도 및 투과도를 저하시켰고 반면 너무 과도한 flux의 증가 시는 전도도는 감소하였고 투과도는 증가하는 경향을 보였다. 기판에 도달하는 oxygen ion flux는 faraday cup을 이용하여 측정하였으며 증착된 ITO film은 XPS, UV-spectrometer, 4-point probe를 이용하여 분석하였다.

  • PDF

잉크젯을 이용한 디스플레이 생산을 위한 회전 미러 방식의 잉크젯 액적 모니터링 장비 및 측정법 연구 (High-Speed Monitoring Device to Inspect Inkjet Droplets with a Rotating Mirror and Its Measuring Method for Display Applications)

  • 신동윤
    • 대한기계학회논문집A
    • /
    • 제41권6호
    • /
    • pp.525-532
    • /
    • 2017
  • 차세대 주력 디스플레이인 유기 및 양자점 발광 다이오드를 잉크젯을 이용하여 저렴한 비용으로 생산하기 위한 연구개발이 진행되어 왔으며, 잉크 액적의 토출 신뢰성을 고속으로 검사하기 위한 모니터링 장비의 개발이 요구된다. 본 연구에서는 기존 직선 운동 방식의 잉크젯 모니터링 장비 대신에 로터리 및 리니어 초음파 모터를 이용하여 미러를 회전시킴으로써 노즐들에서 토출되는 잉크 액적들을 모니터링할 수 있는 장비를 개발하여 측정 능력을 시험하였다. $10{\mu}m$, $30{\mu}m$$50{\mu}m$ 직경 원형의 측정 오차는 각각 $0.5{\pm}1.0{\mu}m$, $-1.2{\pm}0.3{\mu}m$$0.2{\pm}0.5{\mu}m$였다. 모니터링 시간은 17초가 소요되었으며, 제어 프로그램의 최적화를 통해 8.6초까지 모니터링 시간을 단축할 수 있는 가능성을 확인하였다.

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • 신새영;문연건;김웅선;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF

Improvement in the Negative Bias Stability on the Water Vapor Permeation Barriers on ZnO-based Thin Film Transistors

  • 한동석;신새영;김웅선;박재형;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.450-450
    • /
    • 2012
  • In recent days, advances in ZnO-based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). In particular, the development of high-mobility ZnO-based channel materials has been proven invaluable; thus, there have been many reports of high-performance TFTs with oxide semiconductor channels such as ZnO, InZnO (IZO), ZnSnO (ZTO), and InGaZnO (IGZO). The reliability of oxide TFTs can be improved by examining more stable oxide channel materials. In the present study, we investigated the effects of an ALD-deposited water vapor permeation barrier on the stability of ZnO and HfZnO (HZO) thin film transistors. The device without the water vapor barrier films showed a large turn-on voltage shift under negative bias temperature stress. On the other hand, the suitably protected device with the lowest water vapor transmission rate showed a dramatically improved device performance. As the value of the water vapor transmission rate of the barrier films was decreased, the turn-on voltage instability reduced. The results suggest that water vapor related traps are strongly related to the instability of ZnO and HfZnO TFTs and that a proper combination of water vapor permeation barriers plays an important role in suppressing the device instability.

  • PDF

영농형 태양광 발전 솔라쉐어링에 따른 하부 일사량 변화의 해석 및 분석 (Simulation and Analysis of Solar Radiation Change Resulted from Solar-sharing for Agricultural Solar Photovoltaic System)

  • 이상익;최진용;성승준;이승재;이지민;최원
    • 한국농공학회논문집
    • /
    • 제62권5호
    • /
    • pp.63-72
    • /
    • 2020
  • Solar-sharing, which is an agricultural photovoltaic system installing solar panels on the upper part of crop growing field, has especially drawn attention. Because paddy fields for cultivating crops are large flat areas, there have been various attempts to utilize solar energy for solar photovoltaic as well as growth of crops in agriculture. Solar-sharing was first proposed in Japan, and has been actively studied for optimization and practical uses. The domestic climate differs from the climate conditions in which the solar-sharing has been widely studied, therefore, it is required to develop the solar-sharing technology suitable for the domestic climate. In this study, a simulation model was developed to analyze the change of solar radiation resulted from the solar-sharing installation. Monthly solar illumination intensity and the change of illumination intensity according to the various conditions of solar panel installation were simulated. The results of monthly illumination analysis differed by altitude of the sun, which was related to season. In addition, it was analyzed that the monthly illumination decreased by up to 42% due to solar-sharing. Accordingly, it is recommended that solar-sharing should be installed as a way to maximize the efficiency of solar photovoltaic system while minimizing the decrease in solar radiation reaching the crops.

Mg와 ZnO 함량변화에 따른 MAZO, MIZO 박막의 특성비교 (Characteristic Comparison of MAZO and MIZO Thin Films with Mg and ZnO Variation)

  • 장준성;김인영;정채환;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.101-105
    • /
    • 2015
  • ZnO is gathering great interest for large square optoelectrical devices of flat panel display (FHD) and solar cell as a transparent conductive oxide (TCO). Herewith, Mg and IIIA (Al, In) co-doped ZnO films were prepared on SLG substrate using RF magnetron sputtering system. The effect of variation of atomic weight % of Mg and ZnO have been investigated. The atomic weight % Al and In are of 3% and kept constant throughout. The numbers of samples were prepared according to their different contents, which are $M_{3%}AZO_{94%}$, $M_{4%}AZO_{93%}-(MAZO)$ and $M_{3%}IZO_{94%}$, $M_{4%}IZO_{93%}-(MIZO)$ respectively. A RF power of 225 W and working pressure of 6 m Torr was used for the deposition at $300^{\circ}C$. All of the two thin film show good uniformity in field emission scanning electron microscopy image. $M_{3%}AZO_{94%}$ thin film shows overall better performance among the all. The film shows the best lowest resistivity, carrier concentration, mobility and Sheet resistance and is found to be are of $8.16{\times}10^{-4}{\Omega}cm$, $4.372{\times}10^{20}/cm^3$, $17.5cm^2/vs$ and $8.9{\Omega}/sq$ respectively. Also $M_{3%}AZO_{94%}$ thin film shows the relatively high optical band gap energy of 3.7 eV with high transmittance more than 80% in visible region required for the better solar cell performance.