• 제목/요약/키워드: Flashover Prediction

검색결과 17건 처리시간 0.026초

누설 전류 모니터링에 의한 오손된 고분자 애자에서의 섬락 예지 방법 (A Flashover Prediction Method by the Leakage Current Monitoring in the Contaminated Polymer Insulator)

  • 박재준;송영철
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권7호
    • /
    • pp.364-369
    • /
    • 2004
  • In this Paper, a flashover prediction method using the leakage current in the contaminated EPDM distribution polymer insulator is proposed. The leakage currents on the insulator were measured simultaneously with the different salt fog application such as 25g, 50g, and 75g per liter of deionized water. Then, the measured leakage currents were enveloped and transformed as the CDFS using the Hilbert transform and the level crossing rate, respectively. The obtained CDFS having different gradients(angles) were used as a important factor for the flashover prediction of the contaminated polymer insulator. Thus, the average angle change with an identical salt fog concentration was within a range of 20 degrees, and the average angle change among the different salt fog concentrations was 5 degrees. However, it is hard to be distinguished each other because the gradient differences among the CDFS were very small. So, the new weighting value was defined and used to solve this problem. Through simulation, it Is verified that the proposed method has the capability of the flashover prediction.

고주파 성분을 사용한 웨이블렛 기반 섬락 예측 (Wavelet-Based Flashover Prediction Using High-Frequency Components)

  • 송영철
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.759-761
    • /
    • 2010
  • In order to monitor operating performance of contaminated outdoor insulators, a wavelet-based flashover prediction method is proposed. In most cases, the low-frequency components, namely, fundamental, $3^{rd}$, and $5^{th}$ harmonic components have been mainly used for the sake of the spectral analysis of the leakage current. However, in this paper, the detail coefficients of wavelet transform representing high-frequency components are used as important information to predict a flashover in the contaminated insulator. Experimental results verify that the proposed method has a superior capability for flashover prediction.

Flashover Prediction of Polymeric Insulators Using PD Signal Time-Frequency Analysis and BPA Neural Network Technique

  • Narayanan, V. Jayaprakash;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1375-1384
    • /
    • 2014
  • Flashover of power transmission line insulators is a major threat to the reliable operation of power system. This paper deals with the flashover prediction of polymeric insulators used in power transmission line applications using the novel condition monitoring technique developed by PD signal time-frequency map and neural network technique. Laboratory experiments on polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. Partial discharge signals were acquired using advanced ultra wide band detection system. Salient features from the Time-Frequency map and PRPD pattern at different pollution levels were extracted. The flashover prediction of polymeric insulators was automated using artificial neural network (ANN) with back propagation algorithm (BPA). From the results, it can be speculated that PD signal feature extraction along with back propagation classification is a well suited technique to predict flashover of polymeric insulators.

A Numerical Approach for Lightning Impulse Flashover Voltage Prediction of Typical Air Gaps

  • Qiu, Zhibin;Ruan, Jiangjun;Huang, Congpeng;Xu, Wenjie;Huang, Daochun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1326-1336
    • /
    • 2018
  • This paper proposes a numerical approach to predict the critical flashover voltages of air gaps under lightning impulses. For an air gap, the impulse voltage waveform features and electric field features are defined to characterize its energy storage status before the initiation of breakdown. These features are taken as the input parameters of the predictive model established by support vector machine (SVM). Given an applied voltage range, the golden section search method is used to compute the prediction results efficiently. This method was applied to predict the critical flashover voltages of rod-rod, rod-plane and sphere-plane gaps over a wide range of gap lengths and impulse voltage waveshapes. The predicted results coincide well with the experimental data, with the same trends and acceptable errors. The mean absolute percentage errors of 6 groups of test samples are within 4.6%, which demonstrates the validity and accuracy of the predictive model. This method provides an effectual way to obtain the critical flashover voltage and might be helpful to estimate the safe clearances of air gaps for insulation design.

Prediction of Flashover and Pollution Severity of High Voltage Transmission Line Insulators Using Wavelet Transform and Fuzzy C-Means Approach

  • Narayanan, V. Jayaprakash;Sivakumar, M.;Karpagavani, K.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1677-1685
    • /
    • 2014
  • Major problem in the high voltage power transmission line is the flashover due to polluted ceramic insulators which leads to failure of equipments, catastrophic fires and power outages. This paper deals with the development of a better diagnostic tool to predict the flashover and pollution severity of power transmission line insulators based on the wavelet transform and fuzzy c-means clustering approach. In this work, laboratory experiments were carried out on power transmission line porcelain insulators under AC voltages at different pollution conditions and corresponding leakage current patterns were measured. Discrete wavelet transform technique is employed to extract important features of leakage current signals. Variation of leakage current magnitude and distortion ratio at different pollution levels were analyzed. Fuzzy c-means algorithm is used to cluster the extracted features of the leakage current data. Test results clearly show that the flashover and pollution severity of power transmission line insulators can be effectively realized through fuzzy clustering technique and it will be useful to carry out preventive maintenance work.

건축 내장재의 Flashover시간 및 열방출량 예측에 관한 연구 (A Study on the Prediction of Flashover Time and Heat Release Rate(HRR) for Building Interior Materials)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제18권3호
    • /
    • pp.30-38
    • /
    • 2004
  • 화재성장기 동안의 중요한 특징은 국부연소에서 전실연소로 전이되는 플래시오버 현상이다. 본 연구의 목적은 건축내장재의 플래시오버 시간 및 발화시간 그리고 열방출량을 예측에 있다. Response Surface Methodology(RSM) 방법과 문헌자료를 사용하여 플래시오버 시간 및 발화시간 그리고 열방출량을 예측하는 식을 제시하였다. 예측식에 의해 계산된 플래시오버 시간과 문헌값의 A.A.P.E.는 38.74초, A.A.D.는 51.42초 그리고 상관계수는 0.975이다. 발화시간의 예측값과 문헌값의 A.A.P.E.는 10.96초, A.A.D.는 1.97초 그리고 상관계수는 0.962이다. 또한 시간에 의한 플래시오버 열방출량의 예측값과 문헌값의 A.A.P.E.는 29.92, A.A.D.는 514 그리고 상관계수는 0.830이다. 제시한 예측식에 의한 계산값은 문헌값과 일치하였다. 따라서 본 연구에서 제시된 식이 다른 건축내장재 연구에도 이용되기를 기대한다.

방전신호 검출에 의한 전기화재 예측 (Electric Fire Prediction by Detection of Discharge Signal)

  • 길경석;송재용;권장우
    • 한국정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.413-419
    • /
    • 2004
  • 본 논문은 전기설비로부터 방전신호 검출을 통한 전기화재 예측 기법에 관하여 기술하였다. 방전현상으로부터 전기화재 예측에 필요한 전기적 정보를 얻기 위하여 절연지를 통한 연면 방전, 선간 단락 등 다양한 방전현상을 실험적으로 모의하였다. 실험결과로부터 전기화재 발생시 전원주파수와는 다른 특징적인 주파수 신호가 대부분 차지하는 것을 알 수 있었다. 최종적으로 실험결과에 근거한 방전신호 검출장치를 설계ㆍ제작하였으며, 전원선에서 방전신호를 모니터링하는 것으로 전기화재의 예측이 가능함을 확인하였다.

$SF_6$ 가스 중의 삼중점 절연파괴 예측기술에 관한 연구 (Study on Insulation Prediction of Triple Junction in $SF_6$)

  • 조용성;정진교;이우영
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.989-993
    • /
    • 2009
  • Triple junction which consists of three media(electrode, insulator, and gas) should be considered in designing of high voltage equipments due to the electric field enhancement. In this paper, positive lightning impulse breakdown voltage is predicted based on the streamer theory for simplified insulator models and 72.5kV spacer with varying the triple junction geometry and gas pressure, and the results are compared to the experimental results. The electric field coefficient concept is also applied in order to evaluate the partial discharge inception voltage and the surface flashover voltage from the streamer inception voltage. The application of this method using the constant electric field coefficient of 1.3 and 0.66 is possible for evaluating the triple-junction insulation of the simplified insulator and the 72.5kV spacer respectively. The error rate is under 10%.