• Title/Summary/Keyword: Flash Flood Warning System

Search Result 25, Processing Time 0.025 seconds

The big data method for flash flood warning (돌발홍수 예보를 위한 빅데이터 분석방법)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.245-250
    • /
    • 2017
  • Flash floods is defined as the flooding of intense rainfall over a relatively small area that flows through river and valley rapidly in short time with no advance warning. So that it can cause damage property and casuality. This study is to establish the flash-flood warning system using 38 accident data, reported from the National Disaster Information Center and Land Surface Model(TOPLATS) between 2009 and 2012. Three variables were used in the Land Surface Model: precipitation, soil moisture, and surface runoff. The three variables of 6 hours preceding flash flood were reduced to 3 factors through factor analysis. Decision tree, random forest, Naive Bayes, Support Vector Machine, and logistic regression model are considered as big data methods. The prediction performance was evaluated by comparison of Accuracy, Kappa, TP Rate, FP Rate and F-Measure. The best method was suggested based on reproducibility evaluation at the each points of flash flood occurrence and predicted count versus actual count using 4 years data.

Estimation of Flash Flood Guidance considering Uncertainty of Rainfall-Runoff Model (강우-유출 모형의 불확실성을 고려한 돌발홍수기준)

  • Lee, Keon-Haeng;Kim, Hung-Soo;Kim, Soo-Jun;Kim, Byung-Sik
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.155-163
    • /
    • 2010
  • The flash flood is characterized as flood leading to damage by heavy rainfall occurred in steep slope and impervious area with short duration. Flash flood occurs when rainfall exceeds Flash Flood Guidance(FFG). So, the accurate estimation of FFG will be helpful in flash flood forecasting and warning system. Say, if we can reduce the uncertainty of rainfall-runoff relationship, FFG can be estimated more accurately. However, since the rainfall-runoff models have their own parameter characteristics, the uncertainty of FFG will depend upon the selection of rainfall-runoff model. This study used four rainfall-runoff models of HEC-HMS model, Storage Function model, SSARR model and TANK model for the estimation of models' uncertainties by using Monte Carlo simulation. Then, we derived the confidence limits of rainfall-runoff relationship by four models on 95%-confidence level.

A Model to Identify Expeditiously During Storm to Enable Effective Responses to Flood Threat

  • Husain, Mohammad;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.23-30
    • /
    • 2021
  • In recent years, hazardous flash flooding has caused deaths and damage to infrastructure in Saudi Arabia. In this paper, our aim is to assess patterns and trends in climate means and extremes affecting flash flood hazards and water resources in Saudi Arabia for the purpose to improve risk assessment for forecast capacity. We would like to examine temperature, precipitation climatology and trend magnitudes at surface stations in Saudi Arabia. Based on the assessment climate patterns maps and trends are accurately used to identify synoptic situations and tele-connections associated with flash flood risk. We also study local and regional changes in hydro-meteorological extremes over recent decades through new applications of statistical methods to weather station data and remote sensing based precipitation products; and develop remote sensing based high-resolution precipitation products that can aid to develop flash flood guidance system for the flood-prone areas. A dataset of extreme events has been developed using the multi-decadal station data, the statistical analysis has been performed to identify tele-connection indices, pressure and sea surface temperature patterns most predictive to heavy rainfall. It has been combined with time trends in extreme value occurrence to improve the potential for predicting and rapidly detecting storms. A methodology and algorithms has been developed for providing a well-calibrated precipitation product that can be used in the early warning systems for elevated risk of floods.

Development of an Integrated Forecasting and Warning System for Abrupt Natural Disaster using rainfall prediction data and Ubiquitous Sensor Network(USN) (농촌지역 돌발재해 피해 경감을 위한 USN기반 통합예경보시스템 (ANSIM)의 개발)

  • Bae, Seung-Jong;Bae, Won-Gil;Bae, Yeon-Joung;Kim, Seong-Pil;Kim, Soo-Jin;Seo, Il-Hwan;Seo, Seung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS, UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.

Flood Forecasting and Warning System using Real-Time Hydrologic Observed Data from the Jungnang Stream Basin (실시간 수문관측자료에 의한 돌발 홍수예경보 시스템 -중랑천 유역을 중심으로-)

  • Lee, Jong-Tae;Seo, Kyung-A;Hur, Sung-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.51-65
    • /
    • 2010
  • We suggest a simple and practical flood forecasting and warning system, which can predict change in the water level of a river in a small to medium-size watershed where flash flooding occurs in a short time. We first choose the flood defense target points, through evaluation of the flood risk of dike overflow and lowland inundation. Using data on rainfall, and on the water levels at the observed and prediction points, we investigate the interrelations and derive a regression formula from which we can predict the flood level at the target points. We calculate flood water levels through a calibrated flood simulation model for various rainfall scenarios, to overcome the shortage of real water stage data, and these results as basic population data are used to derive a regression formula. The values calculated from the regression formula are modified by the weather condition factor, and the system can finally predict the flood stages at the target points for every leading time. We also investigate the applicability of the prediction procedure for real flood events of the Jungnang Stream basin, and find the forecasting values to have close agreement with the surveyed data. We therefore expect that this suggested warning scheme could contribute usefully to the setting up of a flood forecasting and warning system for a small to medium-size river basin.

Flash Flood Risk Assessment for Mountainous Area using a Multi-Criteria Decision Analysis (다기준의사결정기법을 이용한 산지유역 돌발홍수 위험도 평가)

  • Lee, Jung-Ho;Park, Moo-Jong;Jun, Hwan-Don
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.337-341
    • /
    • 2010
  • 최근들어 기상 이변에 따라 단시간에 집중되는 국지호우로 인하여 돌발홍수(Flash Flood)에 의한 피해가 빈번하게 발생하고 있다. 대하천의 경우에는 각 홍수 통제소에 의한 홍수 예경보 시스템(Flood Warning System)을 통하여 본류 구간에서의 인명 및 재산 피해가 과거에 비하여 상당히 감소하였으나 소하천에서는 반대로 피해가 증가하고 있는 실정이며, 따라서 돌발홍수에 대한 대비의 필요성이 증대되고 있는 실정이다. 본 연구에서는 돌발홍수로 인한 인명 및 재산 피해를 최소화하기 위하여 산지유역의 돌발홍수 발생 위험도를 평가할 수 있는 방법론을 제시하였다. 돌발홍수 위험도를 평가하기 위하여 고려되는 요소들로는 유역경사, 하천경사, 강우특성 등이며, 이러한 서로 다른 단위의 평가요소들을 종합적으로 고려하기 위하여 다기준의사결정방법 중 하나인 PROMETHEE 기법을 이용하였다. 주요 평가 인자들은 크게 지형특성, 지역특성 및 강우특성으로 구분되며, 각 평가 요소들간의 상대적인 가중치의 산정은 엔트로피 이론을 이용하였다. 본 연구에서 제안된 위험도 평가 방법은 그 적용성을 검증하기위하여 17개의 소유역들을 포함하고 있는 봉화군 유역에 적용되었다. 적용 결과 봉화군 유역 내 17개의 소유역들은 돌발홍수에 대한 상대적인 위험도에 따라 고 중 저위험군으로 분류되었으며, 과거 돌발홍수로 인한 피해 이력이 있는 소유역이 고위험군에 속해있는 결과를 나타냄으로써 본 연구의 방법론에 대한 적용성이 검증되었다.

  • PDF

Determining the Flash Flood Warning Trigger Rainfall using GIS (GIS를 활용한 돌발홍수 기준우량 결정)

  • Hwang, Chang-Sup;Jun, Kye-Won;Yeon, In-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.78-88
    • /
    • 2006
  • This paper is to apply Geographical Information System (GIS) supported Geomorphoclimatic Instantaneous Unit Hydrograph (GCIUH) approach for the calculated flash flood trigger rainfall of the mountainous area. GIS techniques was applied in geography data construction such as average slope, drainage area, channel characteristics. Especially, decided stream order using GIS at stream order decision that is important for input variable of GCIUH. We compared the GCIUH peak discharge with the existing report using the design storm at Chundong basin($14.58km^2$). The results showed that derived the GCIUH was a very proper method in the calculation of mountaunous discharge. At the Chundong basin, flash flood trigger rainfall was 12.57mm in the first 20 minutes when the threshold discharge was $11.42m^3/sec$.

  • PDF

Flash Flood Warning System for Mountainous Region Based on Hydrogeomorphological Approach (수문지형학적 접근에 기초한 산악지역의 돌발홍수예경보시스템 연구)

  • Kim, Hong-Tae;Shin, Hyun-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.811-815
    • /
    • 2005
  • 산악지역의 유출은 지형적 특성 때문에 매우 빠른 반응시간을 가지고 첨두유량 또한 매우 크게 마련인데 이러한 특성 때문에 산악지역의 돌발홍수 발생 메카니즘과 이것의 정확한 규명은 지금까지 수많은 연구과제의 주제가 되어왔다. 본 연구는 산악지역의 유출 특성을 잘 반영한다고 알려진 수문지형학을 기초한 지형기후학적단위도(geomorphoclimatic unit hydrograph, GCUH) 이론을 토대로 단일유역 산악지역과 분할유역 규모의 유출 특성을 규명하고 각각의 유역특성에 맞는 돌발홍수예경보시스템을 제안 및 비교 검토하고자 한다.

  • PDF

Mountainous Flash Flood Monitoring and Improvement for the Prediction & Early Warning System (산지 돌발홍수 모니터링 및 예경보체계 개선)

  • Chung, Jae-Hak;Lee, Jong-Seol;Park, Sang-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.365-370
    • /
    • 2011
  • 매년 반복되는 산간계곡에서의 인명피해를 저감하기 위하여 방재연구소에서는 "산지 돌발홍수 예측시스템"을 개발하였으며, '10년 우기철동안 시범지역의 모니터링을 통해 시스템의 문제점을 분석하고, 이를 개선하기 위한 방안을 검토하였다. 산지지역 강우에 대한 모니터링은 현재 지방자치단체에서 운영하고 있는 자동우량경보시설을 활용하였으며, 해당 시설중 특히 수위계가 설치된 지역에 대하여 검토하였다. 수위자료 모니터링 결과를 바탕으로 정확도를 검토한 결과, 5개 시범지역의 경우 약 56%의 정확도가 있는 것으로 나타났다. 산정되었다. 그러나 시스템을 수정 보완한 후에는 정확도가 66%로 증가하였다. 향후 지속적인 모니터링과 문제점 분석을 통해 정확도를 지속적으로 향상시킬 계획이다.

  • PDF

The Study of the Fitness on Calculation of the Flood Warning Trigger Rainfall Using GIS and GCUH (GIS와 GCUH를 이용한 돌발홍수 기준우량 산정의 타당성 검토 연구)

  • Shin, Hyun-Suk;Kim, Hong-Tae;Park, Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.407-424
    • /
    • 2004
  • Using geomorphoclimatic unit hydrograph(GCUH), we estimated the fitness to calculate the mountainous area discharge and flash flood trigger rainfall(FFTR). First, we compared the GCUH peak discharge with the existing report using the design storm at the Dukcheon basin. Second, we compared the HEC-HMS(Hydrologic Engineering Center-Hydrologic Modeling System) model and GCUH with the observed discharge using the real rainfall events at the Taesu stage gage. Third, GCUH and NRCS(Natural Resources Conservation Service) were used for calculating FFTR and proper calculation method was shown. At the Dukcheon basin, the comparison result of using design storm was shown in Table 11, and it was not in excess of 1.1, except for the 30 year return period. In case of real rainfall events, the result was shown in Table 12, and GCUH discharges were all larger than the HEC-HMS model discharges, and they were very similar to the observed data at the Taesu stage gage. In this study, we found that GCUH was a very proper method in the calculation of mountainous discharge. At the Dukcheon basin, FFTR was 12.96 mm in the first 10 minutes when the threshold discharge was 95.59 $m^3$/sec.