• Title/Summary/Keyword: Flapping characteristics

Search Result 63, Processing Time 0.019 seconds

Numerical Simulation of MIT Flapping Foil Experiment : Unsteady Flow Characteristics (MIT 요동 익형의 수치해석 : 비정상 유동 특성)

  • Bae Sang Su;Kang Dong Jin;Kim Jae Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.133-140
    • /
    • 1998
  • A Navier-Stokes code based on a unstructured finite volume method is used to simulate the MIT flapping foil experiment. A low Reynolds number $k-{\varepsilon}$ turbulence model is used to close the Reynolds averaged Navier-Stokes equations. Computations are carried out for a domain involving two flapping foils and a downstream hydrofoil. The computational domain is meshed with unstructured quadrilateral elements, partly structured. Numerical solutions show good agreement with experiment. Unsteadiness inside boundary layer is entrained when a unsteady vortex impinge on the blade surface. It shoves that local peak value inside the boundary layer and also local minimum near the edge of boundary layer as it developes along the blade surface. The unsteadiness inside the boundary layer is almost isolated from the free stream unsteadiness and being convected at local boundary layer speed, less than the free stream value.

  • PDF

Design.Manufacture on X-wing type flapping vehicle (X-wing type 날개짓 비행체의 설계.개발)

  • Yoon, Kwang-Joon;Park, Joon-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1437-1440
    • /
    • 2008
  • This research describes about designing and manufacturing X-wing type flapping micro aerial vehicle which intends to improve the performance of one-pair wing flapping vehicle with innovated design. This design, X-wing as we call, was introduced for some time ago from many laboratories but still there hasn’t any reports dealing on its theoretical or numerical analysis. By manufacturing the X-wing with our own design and succeeding its flight test will give us the general idea on X-wing which may guide us to conduct the numerical and experimental analysis later on. We focused to design the X-wing and introduce some conceptual theories about its characteristics on this report.

  • PDF

The Effect of Aspect Ratio on Aerodynamic Characteristics of Flapping Motion (날개의 종횡비가 날개 짓 운동의 공기역학적 특성에 미치는 영향)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Kim, Kwang-Ho;Chung, Jin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.217-220
    • /
    • 2006
  • The lift and drag forces produced by a wing of a given cross-sectional profile are dependent on the wing planform and the angle of attack. Aspect ratio is the ratio of the wing span to the average chord. For conventional fixed wing aircrafts, high aspect ratio wings produce a higher lift to drag ratio than low ones for flight at subsonic speeds. Therefore, high aspect ratio wings are used on aircraft intended for long endurance. However, birds and insects flap their wings to fly in the air and they can change their wing motions. Their wing motions are made up of translation and rotation. Therefore, we tested flapping motions with parameters which affect rotational motion such as the angle of attack and the wing beat frequency. The half elliptic shaped wings were designed with the variation of aspect ratio from 4 to 11. The flapping device was operated in the water to reduce the wing beat frequency according to Reynolds similarity. In this study, the aerodynamic forces, the time-averaged force coefficients and the lift to drag ratio were measured at Reynolds number 15,000 to explore the aerodynamic characteristics with the variation of aspect ratio. The maximum lift coefficient was turned up at AR=8. The mean drag coefficients were almost same values at angle of attack from $10^{\circ}$ to $40^{\circ}$ regardless of aspect ratio, and the mean drag coefficients above angle of attack $50^{\circ}$ were decreased according to the increase of aspect ratio. For flapping motion the maximum mean lift to drag ratio appeared at AR=8.

  • PDF

Structural and Aerodynamic Characteristics of A Flapping Wing with Changeable Camber Using A Smart Material (스마트 재료를 이용한 캠버 변화가 가능한 플래핑 날개 구조 및 공력 특성)

  • Kim, Dae-Kwan;Kim, Hong-Il;Kwon, Ki-Jung;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.390-396
    • /
    • 2007
  • In the present study, we have developed a flapping wing using a smart material to mimic the nature's flyers, birds. The wing consists of composite frames, a flexible PVC film and a surface actuator, and the main wing motions are flapping, twisting and camber motions. To change the camber, a Macro-Fiber Composite(MFC) is used as the surface actuator, and it's structural response is analyzed by the use of piezoelectric-thermal analogy. To measure the lift and thrust simultaneously, a test stand consisting of two load cells is manufactured. Some aerodynamic tests are performed for the wing in a subsonic wind tunnel to evaluate the dynamic characteristics. Experimental results show that the main lift is mostly affected by the forward velocity and the pitch angle, but the thrust is mostly affected by the flapping frequency. The effect of the camber generated by the MFC actuator can produce the sufficient lift increment of up to 24.4% in static condition and 20.8% in dynamic condition.

Unsteady Aerodynamic Characteristics of an Non-Synchronous Heaving and Pitching Airfoil Part 1 : Frequency Ratio (비동기 히브 및 피치 운동에 따른 에어포일 비정상 공력 특성 Part 1 : 진동 주파수 비)

  • Seunghwan Ji;Cheoulheui Han
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.54-62
    • /
    • 2023
  • Flapping-wing air vehicles, well known for their free vertical take-off and excellent flight capability, are currently under intensive development and research. While most of the studies have explored the effect of various parameters of synchronized motions on the unsteady aerodynamics of flapping wings, limited attention has been given to the effect of nonsynchronous motions on the unsteady aerodynamic characteristics of flapping wings. In the present study, we conducted a numerical analysis to investigate the unsteady aerodynamic characteristics of an airfoil flapping with different frequency ratios between pitch and heave oscillations. We identified the motions and angle of attacks due to nonsynchronous motions. It was found that the synchronous motion produced thrust with zero lift, but the nonsynchronous motion generated a large lift with little drag. The aerodynamic characteristics of the airfoil undergoing the non-synchronous motion were also analyzed using the vorticity distributions and the pressure coefficient around and on the airfoil. When r was equal to 0.5, larger leading and trailing edge vortices were observed compared to the case when r was equal to 1.0, and these vortices significantly affected the aerodynamic characteristics of the airfoil undergoing the nonsynchronous motion. In future, the effect of pitch amplitude on the unsteady aerodynamic characteristics of the airfoil will be studied.

A Study on Aerodynamic Characteristics of Flapping Motion (플래핑 운동의 공기역학적 특성에 관한 연구)

  • Kim Yoon-Joo;Oh Hyun-Taek;Chung Jin Taek;Choi Hang-Cheol;Kim Kwang-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2005
  • Birds and insects flap their wings to fly in the air and they can change their wing motions to do steering and maneuvering. Therefore, we created various wing motions with the parameters which affected flapping motion and evaluated the aerodynamic characteristics about those cases in this study. As the wing rotational velocity was fast and the rotational timing was advanced, the measured aerodynamic forces showed drastic increase near the end of stroke. The mean lift coefficient was increased until angle of attack of $50^{\circ}$ and showed the maximum value of 1.0. The maximum mean lift to drag ratio took place at angle of attack of $20^{\circ}$. Flow fields were also visualized around the wing using particle image velocimetry (PIV). From the flow visualization, leading-edge vortex was not shed at mid-stroke until angle of attack of $50^{\circ}$. But it was begun to shed at angle of attack of $60^{\circ}$.

  • PDF

Effects of Upstream Wake Frequency on the Unsteady Boundary Layer Characteristics On a Downstream Blade (상류 후류의 발달 주파수가 하류 익형의 비정상 경계층 거동에 미치는 영향)

  • Bae Sang Su;Kang Dong Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.181-186
    • /
    • 1999
  • The effects of the frequency of upstream gust on the unsteady boundary characteristics on a downstream blade was simulated by using a Navier-Stokes code. The Navier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds k-e turbulence model to close the momentum equations. The MIT flapping foil experiment set-up is used to simulate the interaction between the upstream wake and a blade. The frequency of the upstream wake is simulated by varying rate of pitching motion of the flapping airfoils. Three reduced frequencies. 3.62. 7.24. and 10.86. are simulated. As the frequency increases, the unsteady fluctuation on the surfaces of the downstream hydrofoil is shown to decrease while the upstream flapper wake has larger first harmonics of y-velocity component. The unsteady vortices are shown to interact with each other and. as a result. the upstream wake becomes undiscernible inside the inner layer. The turbulence kinetic energy shows a similar behavior. Limiting streamlines around the trailing edge of the flapper are shown to conform with the unsteady Kutta condition for a round trailing edge. while limiting streamlines around the trailing edge of the hydrofoil conforms with the unsteady Kutta condition for a sharp edge.

  • PDF

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Structural modeling of actuation of IPMC in dry environment: effect of water content and activity

  • Swarrup, J. Sakthi;Ranjan, Ganguli;Giridhar, Madras
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.553-565
    • /
    • 2017
  • Structural modeling of unencapsulated ionic polymer metal composite (u-IPMC) actuators that are used for flapping the insect scale-flapping wing of micro air vehicles (FMAV) in dry environmental conditions is carried out. Structural modeling for optimization of design parameters for retention of water, maximize actuation performance and to study the influence of water activity on the actuation characteristics of u-IPMC is explored for use in FMAV. The influence of equivalent weight of Nafion polymer, cations, concentration of cations, pre-treatment procedures on retention of water of u-IPMCs and on actuation parameters, flapping angle, flexural stiffness and actuation displacement are investigated. IPMC designed with Nafion having equivalent weight 900-1100, pre-heated at $30^{\circ}C$ and with sodium as the cations is promising for optimum retention of water and actuation performance. The actuation parameters while in operation in dry and humid environment with varying water activity can be tuned to desirable frequency, deflection, flap angle and flexural stiffness by changing the water activity and operational temperature of the environment.