• Title/Summary/Keyword: Flanking region

Search Result 182, Processing Time 0.023 seconds

The Complete Nucleotide Sequence of Alkalophilic Bacillus sp. K-17 $\beta$-Xylosidase Gene

  • Chun, Hyo-Kon;Ko, Hak-Ryong;Kho, Yung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 1991
  • The complete nucleotide sequence of alkalophilic Bacillus sp. K-17 $\beta$-xylosidase gene and its flanking regions were established. A 1263-bp of an open reading frame for $\beta$-xylosidase was observed. The molecular weight (50, 521 dalton), deduced from the nucleotide sequence of $\beta$-xylosidase gene, agreed with the result obtained by SDS-polyacrylamide gel electrophoresis of the purified enzyme (51, 000 dalton). The Shine-Dalgarno sequence, 5'-GAGGAGG-3', was found 8 bp upstream of the initiation codon ATG. The -10 sequence (TAAAAT) in the promoter region for $\beta$-xylosidase gene was similar to the consensus sequence for Bacillus subtilis RNA polymerase, whereas the -35 sequence (TCGATCA) different from all the known -35 regions in the promoter for Bacillus subtilis RNA polymerase.

  • PDF

Characterization of a new staphylococcal site-specific recombinase sin and genetic organization of its flanking region

  • Yong, Jun-Hyong;Kim, Young-Sun;Byeon, Woo-Hyeon
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.92-96
    • /
    • 1997
  • A new site-specific recombinase sin, as a component of a putatie transposon has been cloned and its base sequence has been determined. The proposed sin shows a hish degree of homology with pI9789-sin and pSK1-sin. There is a large (16 bp) inverted repeat downstream of proposed sin and the postulate dhelix-turn-helix motif is located at the extreme C-terminus of the poposed Sin. The transposase gene (tnpA) and .betha.-lactamase gene (blaZ) are located upstream of sin and arsenate reductase gene (arsC) and arsenic efflux pump protein gene (ars B) are downstream. This genetic arrangement seems to be a part of a new putative transposon because there is no known transposon with a gene arrangement of tnpA-blaZ-sin-arsC.

  • PDF

Sequence-specific interaction between ABD-B homeodomain and castor gene in Drosophila

  • Kim, Keon-Hee;Yoo, Siuk
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.92-97
    • /
    • 2014
  • We have examined the effect of bithorax complex genes on the expression of castor gene. During the embryonic stages 12-15, both Ultrabithorax and abdominal-A regulated the castor gene expression negatively, whereas Abdominal-B showed a positive correlation with the castor gene expression according to real-time PCR. To investigate whether ABD-B protein directly interacts with the castor gene, electrophoretic mobility shift assays were performed using the recombinant ABD-B homeodomain and oligonucleotides, which are located within the region 10 kb upstream of the castor gene. The results show that ABD-B protein directly binds to the castor gene specifically. ABD-B binds more strongly to oligonucleotides containing two 5'-TTAT-3' canonical core motifs than the probe containing the 5'-TTAC-3' motif. In addition, the sequences flanking the core motif are also involved in the protein-DNA interaction. The results demonstrate the importance of HD for direct binding to target sequences to regulate the expression level of the target genes.

Molecular Cloning and Expression of Genes Related to Antifungal Activities from Enterobacter sp. B54 Antagonistic to Phytophthora capsici

  • YOON, SANG-HONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.352-357
    • /
    • 1999
  • Enterobacter sp. B54 inhibited growth of the fungus Phytophthora capsici on potato dextrose agar (PDA). Three mutants with antifungal activities (denoted M54-47, M54-113, and M54-329) which were lost or increased, through Pl::Tn5 lac mutagenesis, were used to isolate genes responsible for fungal inhibition on PDA. Two clones were selected from the partially EcoR1-digested genomic library of the wild-type strain by probing with genomic flanking sequences of each mutant. We have isolated a 20-kb EcoR1 genomic DNA fragment from this strain that contains genes involved in hyphal growth inhibition of P. capsici on PDA. Subcloning and expression analysis of the above DNA fragment identified a 8-kb region which was necessary for antifungal activities. A 8-kb HindⅢDNA fragment covers three genomic loci inserted by Tn5 lac in each mutant. This suggested that all genes which are related to antifungal activities might be clustered in simple forms of at least 5-8 kb sizes.

  • PDF

Application of LFH-PCR for the Disruption of SpoIIIE and SpoIIIG of B. subtilis

  • Kim, June-Hyung;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.327-331
    • /
    • 2000
  • The application of LFH-PCR(long flanking homology region-PCR) for Bacillus subtilis gene disruption is presented. Without plasmid- or phage-vector construction, only by PCR, based on a DNA sequence retrieved from B. subtilis genome data base, kanamycin resistance gene was inserted into two genes of B. subtilis involved in sporulation, spoIIIE and spoIIIG. The effect of gene disruption on subtilisin expression was examined and the sporulation frequency of two mutants was compared to that of the host strain. For this purpose, only 2 or 3 rounds of PCR were required with 4 primers. We first demonstrated the possibility of LFH-PCR for rapid gene disruption to characterize an unknown functional gene of B. subtilis or other prokaryote in the genomic era.

  • PDF

Nucleotide Sequence of a Proteinase Inhibitor I Gene in Potato (감자에 존재하는 단백질분해효소 억제제 I 유전자의 염기서열)

  • 이종섭
    • Journal of Plant Biology
    • /
    • v.32 no.2
    • /
    • pp.67-78
    • /
    • 1989
  • Hybridization of DNA isolated from leaves of Russet Burbank potato with tomato cDNA as a probe revealed the presence of about ten inhibitor 1 genes in the genome. Screening of a genomic library of Russet Burbank potato resulted in isolation of seven different genomic clones carrying inhibitor I genes. One of the genomic clones, clone 2, contained two EcoRI fragments of 3.4 and 1.8 kb in size, respectively, which were hybridized with the probe. The nucleotide sequence of parts of the hybridizing EcoRI fragments revealed that they contain a complete gene which codes for an open reading frame of 107 amino acids. It is interrupted by two intervening sequences of 502 and 493 bp, situated at the positions of codons 17 and 43, respectively, of the open reading frame. Putative regulatory sequences, TATAAA and CCACT, were found at the 5' flanking region. In addition, a copy of a 100 bp repeat found at a tomato inhibitor I gene was identified.

  • PDF

Induction of Quinone Reductase , an Anticarcinogenic Marker Enzyme, by Vitamin E in Both Hepalclc7 Cells and Mice

  • Kwon, Chong-Suk;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.122-124
    • /
    • 1999
  • Induction of NAD(P)H : (quinone-acceptor) oxidoreductase (QR) which obligatory two electron reduction of quinones and prevents their participation in oxidative cycling and thereby the depletion of intracellular glutathione, has been used as a marker for chemopreventive agents. We postulated that vitamin E, an antioxidant, which induces QR as the gene of QR was reported to contain antioxidant reponsive element in the 5'-flanking region. Vitamin E resulted in significant induction of QR in both hepalclc7 cells and mouse tissues. QR induction was observed; to be maximal at 25uM vitamin E for hepalclc7 cells while it was maximal in the level of 2.5∼5 μmoles vitamin E/㎏ BW for mouse tissues. Thus the cancer-preventive effect of vitamin E may be exerted by it induction of intracellular detoxifying enzymes.

  • PDF

Identification of Endothelial Specific Region in the Intracellular Adhesion Molecule-2 (ICAM2) Promoter of Miniature Pig

  • Jang, Hoon;Jang, Won-Gu;Kim, Dong Un;Kim, Eun-Jung;Hwang, Sung Soo;Oh, Keon Bong;Lee, Jeong-Woong
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.207-212
    • /
    • 2012
  • The shortage of human organs for transplantation has induced the research on the possibility of using animal as porcine. However, pig to human transplantation as known as xeno-transplantation has major problem as immunorejection. Recently, the solutions of pig to human xenotransplantation are commonly mentioned as having a genetically modification which include alpha 1, 3 galatosyl transferase knockout (GTKO) and immune-suppressing gene transgenic model. Unfortunately, the expression level of transgenic gene is very low activity. Therefore, development of gene overexpression system is the most urgent issue. Also, the tissue specific overexpression system is very important. Because most blood vessels are endothelial cells, establishment of the endothelial-specific promoter is attractive candidates for the introduction of suppressing immunorejection. In this study, we focus the ICAM2 promoter which has endothelial-specific regulatory region. To detect the regulatory region of ICAM2 promoter, we cloned 3.7 kb size mini-pig ICAM2 promoter. We conduct serial deletion of 5' flanking region of mini-pig ICAM2 promoter then selected promoter size as 1 kb, 1.5 kb, 2 kb, 2.5 kb, and 3 kb. To analyze promoter activity, luciferase assay system was conducted among these vectors and compare endothelial activity with epithelial cells. The reporter gene assay revealed that ICAM2 promoter has critical activity in endothelial cells (CPAE) and 1 kb size of ICAM2 promoter activity was significantly increased. Taken together, our studies suggest that mini-pig ICMA2 promoter is endothelial cell specific overexpression promoter and among above all size of promoters, 1 kb size promoter is optimal candidate to overcome the vascular immunorejection in pig to human xenotransplantation.

Cloning and Molecular Characterization of Porcine β-casein Gene (CNS2)

  • Lee, Sang-Mi;Kim, Hye-Min;Moon, Seung-Ju;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.421-427
    • /
    • 2012
  • The production of therapeutic proteins from transgenic animals is one of the most important successes of animal biotechnology. Milk is presently the most mature system for production of therapeutic proteins from a transgenic animal. Specifically, ${\beta}$-casein is a major component of cow, goat and sheep milk, and its promoter has been used to regulate the expression of transgenic genes in the mammary gland of transgenic animals. Here, we cloned the porcine ${\beta}$-casein gene and analyzed the transcriptional activity of the promoter and intron 1 region of the porcine ${\beta}$-casein gene. Sequence inspection of the 5'-flanking region revealed potential DNA elements including SRY, CdxA, AML-a, GATA-3, GATA-1 and C/EBP ${\beta}$. In addition, the first intron of the porcine ${\beta}$-casein gene contained the transcriptional enhancers Oct-1, SRY, YY1, C/EBP ${\beta}$, and AP-1, as well as the retroviral TATA box. We estimated the transcriptional activity for the 5'-proximal region with or without intron 1 of the porcine ${\beta}$-casein gene in HC11 cells stimulated with lactogenic hormones. High transcriptional activity was obtained for the 5'-proximal region with intron 1 of the porcine ${\beta}$-casein gene. The ${\beta}$-casein gene containing the mutant TATA box (CATAAAA) was also cloned from another individual pig. Promoter activity of the luciferase vector containing the mutant TATA box was weaker than the same vector containing the normal TATA box. Taken together, these findings suggest that the transcription of porcine ${\beta}$-casein gene is regulated by lactogenic hormone via intron 1 and promoter containing a mutant TATA box (CATAAAA) has poor porcine ${\beta}$-casein gene activity.

Transcriptional activation of human GM3 synthase (hST3Gal V) gene by valproic acid in ARPE-19 human retinal pigment epithelial cells

  • Song, Na-Ree;Kim, Seok-Jo;Kwon, Haw-Young;Son, Sung-Wook;Kim, Kyoung-Sook;Ahn, Hee-Bae;Lee, Young-Choon
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.405-409
    • /
    • 2011
  • The present study demonstrated that valproic acid (VPA) transcriptionally regulates human GM3 synthase (hST3Gal V), which catalyzes ganglioside GM3 biosynthesis in ARPE-19 human retinal pigment epithelial cells. For this, we characterized the promoter region of the hST3Gal V gene. Functional analysis of the 5'-flanking region of the hST3Gal V gene revealed that the -177 to -83 region functions as the VPA-inducible promoter and that the CREB/ATF binding site at -143 is crucial for VPA-induced expression of hST3Gal V in ARPE-19 cells. In addition, the transcriptional activity of hST3Gal V induced by VPA in ARPE-19 cells was inhibited by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. In summary, our results identified the core promoter region in the hST3Gal V promoter and for the first time demonstrated that ATF2 binding to the CREB/ATF binding site at -143 is essential for transcriptional activation of hST3Gal V in VPA-induced ARPE-19 cells.