• Title/Summary/Keyword: Flanging Process

Search Result 26, Processing Time 0.02 seconds

Development of the technique for prediction of the hub-hole crack with the punching effect (펀칭 효과를 고려한 허브홀의 파단 예측기법 개발)

  • Lee J. S.;Ko Y. K.;Huh H.;Kim H. K.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.362-365
    • /
    • 2005
  • The hub hole is usually formed with a flanging process followed by a blanking process of a ]tole. Since the hole is made by blanking, the blanked surface is so rough that the formability in the region is rather poor. The emerging task is to identify the formability of the blanked region in the forming simulation and to relate the criterion to the real forming process by experiments. In this paper, hole expansion tests are carried out with respect to various hole conditions to verify the hole condition effect on the hole expansion ratio. The hole of specimens is made by machining or punching. In the case of punching, two different punching clearances are used for making the hole. From the results of test, fracture mechanism of the hole expansion is explained.

  • PDF

1-Piece Typed Lower Control Arm Using High Strength Hot Rolled Steel Sheet (고강도 열연 강판 적용 단판형 로어암)

  • Kim, D.;Oh, S.T.;Yoon, C.;Han, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.228-229
    • /
    • 2007
  • As one way of weight saving of the vehicle, 1-piece typed lower control arm has been developed using high strength hot rolled steel sheet. In order to overcome the edge splitting problem during edge flanging or burring process, HER (hole expansion ratio) value of steel sheet was primarily considered. The strength grade of steel sheet and the shape were optimized utilizing Taguchi method.

  • PDF

Prediction of fracture in hub-hole expansion process using new ductile fracture criterion (새로운 연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측)

  • Ko Y. K.;Lee J. S.;Kim H. K.;Park S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.163-166
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. The hub-hole expansion process is different from conventional forming processes or hole flanging processes from the view-point of its deformation mode and forming of a thick plate. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed fur finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio is compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

  • PDF

A Study on the impact on the quality of hemming the number of hemming process (헤밍 공정의 횟수가 헤밍 품질에 미치는 영향에 관한 연구)

  • Shin, Na-Eun;Choi, Moon-Ho;Choi, Young-Deok;Choi, Hae-Un;Jang, Rae-Seong;Choi, Kye-Kwang;Kim, Sei-Hwan;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • In this study, it was investigated by comparing the experimental hemming by the 3 steps and 2 steps in order to stabilize the quality of the hemming process. In the experimental results, the three-step hemming superior to the two-step one and the dimensional stability of part that was made by the three-step on was high. When the second stage Hemming has been found that the deflection caused by the force to the wear of the punch becomes larger plane can be folded by the hemming crimping and crimp uncertain.

Manufacturing Automobile Member Part by Multi-Stage Simulation (다공정 성형 해석에 의한 자동차 멤버 부품 개발)

  • Park C. D.;Chung W. J.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.71-78
    • /
    • 2004
  • Most of member parts have experienced severe springback problems because of their open shape Now it becomes imperative to develop an effective method, which can resolve these problems. However, there remain several obstacles to get accurate estimation of shape error. In analysis, we have to analyze the total process including forming, trimming and flanging. Furthermore, it is another challenge to compare the computed result with the real shape. In this study we developed an analysis program for the springback analysis. We could achive a big enhancement in computation time in springback analysis by using latest equation solving technique and could get a more robust solution conversence by contination method. We have approached this problem in two steps. In the first step, we analyzed forming stage to solve tearing and wrinkling problems. In the second step, we have analyzed full process and have done springback analysis with the same boundary condition as field measuring conditions. We have investigated the accuracy of springback analysis in terms of gap and flush used for insfection of real autobody panels. We found good and effective agreement with the observed results.

  • PDF

A Study on the Control and Exposure Assessment to Vinyl Chloride in the Factory Processing and Producing PVC Resin (일부 PVC 수지 제조 및 가공 근로자의 염화비닐 폭로 평가와 대책에 관한 조사 연구)

  • Park, D.W.;Shin, Y.C.;Lee, N.R.;Lee, K.Y.;Oh, S.M.;Chung, H.K.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.1
    • /
    • pp.33-42
    • /
    • 1994
  • This study was carried out to assess worker exposure to vinyl chloride monomer (VCM) and to present control measures in the factories processing and producing polyvinyl chloride (PVC) resin. The conclusion remarks are as follows. Only two personal samples in the factory ("E") processing polyvinyl chloride resin were analysed to be 27.6 ppm and 12.6 ppm, respectively. But, these concentration exceed 1 ppm, Permissible Exposure Limits (PEL) of OSHA. So, worker's exposure to VCM at "E" factory should be reevaluated. In "A", "B" and "C" factory producing polyvinyl chloride resin, the average worker's exposures to VCM were 0.12 ppm, 0.86 ppm and 1.23 ppm, respectivery. Worker exposure to VCM at distillation and dry process was higer than other processes at "A" factory. The average exposure concentration of worker at polymerization process of "B" and "C" factory was 1.23 ppm, and 1.46 ppm respcetively. These concentration exceed 1 ppm, Permissible Exposure Limits of OSHA. Control room of "B" and "C" factory had 0.91 ppm and 0.65 ppm of worker's exposure concentration respectively. "A" factory was evaluated to be "acceptable", but "B" and "C" factories were evaluated to be "not acceptable", by the workplace exposure assessment program of AIHA. Process other than bagging and control room of "A" factory was evaluated to "not acceptable". Immediate correction measures for preventing workers from exposure to VCM should be performed in the factories or process that were evaluated to be "not acceptable". After these control measures are taken, worker exposure to VCM must be reevaluated through personal air monitoring. Control measures presented by this study are complete sealing of connecting pipe lines, flanging, packing, bolting and nutting. Periodic leak test for leak parts is also required. And positive pressure facility should be constructed at control room of "B" and "C" factory. Fresh air through cleaner such as HEPA filter should be supplied to control room. In addition to these control measures, periodic personal monitoring for evaluating worker exposure to VCM should be performed.

  • PDF