• Title/Summary/Keyword: Flange Joint

Search Result 103, Processing Time 0.023 seconds

The effect of bolt tightening methods and sequence on the performance of gasketed bolted flange joint assembly

  • Abid, Muhammad;Khan, Yasir Mehmood
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.843-852
    • /
    • 2013
  • This paper presents results of the effect of different bolt tightening sequences and methods on the performance of gasketed bolted flange joint using nonlinear finite element analysis. Bolt preload scatter due to elastic interactions, flange stress variation and bolt bending due to flange rotation and gasket contact stress variation is difficult to eliminate in torque control method i.e. tightening one bolt at a time. Although stretch control method (tightening more than one bolt at time) eradicates the bolt preload scatter, flange stress variation is relatively high. Flange joint's performance is compared to establish relative merits and demerits of both the methods and different bolt tightening sequences.

Analytical Study on Ultimate Design Method of Tube Flange Joints with the Rib Plate Using the High Strength Bolt (리브 붙은 고력볼트 강관플랜지 이음의 극한 설계방법에 관한 해석적 연구)

  • Kim, Seong Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.537-547
    • /
    • 2000
  • The tube flange joint often used in the field is a kind of tensional joint method using the high strength bolts. Transferring stress is conducted by high axial pressure between each part of material that is produced by twisting the high strength bolts. And historical characteristics of the flange joint have not been studied sufficiently and it is difficult to say that the design method is established definitely. Therefore new method using ultimate strength is need to be suggested to solve there problems in using flange joint. The purposes in this study are to gain the data base for establishing design method of joint in the form like figure1 and survey whether the joint of tube flange with non-equal diameter can be designed or not in the form like rib or ring.

  • PDF

The Static Strength Analysis of Prying Action for T-flange Shape Structure Using F10T High Strength Bolt (F10T 고장력 볼트를 이용한 T-형 플랜지형 구조물의 Prying Action에 따른 정적강도 해석)

  • Park, Myung-Kyun;Lee, Joong-Won;Koo, Bon-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents and discusses the experimental results on the F10T high strength bolts used in the T-flange joint structure. The experimental works were carried out for the parameters which are flange web thickness, the distance between bolts, prying ratio. The results show that the working stress imposed to bolts decreases as the flange web thickness increases on the other hand the imposed stress to the bolts increases as the distance between two bolts increases. In other words the strength of the T-flange joint increased as the web flange thickness increases and the distance between two bolts decreases. The prying ratio is increased as the distance between two bolts increases and as the flange web thickness decreases However, the degree of stress decrease in flange thickness variation is not that high as the distance variation between two bolts. Finally the equation for predicting the failure stress in T-flange joint structure using F10T high strength bolts was suggested.

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Research on the tightening strategy of bolted flange for contact stiffness of joint surface

  • Zuo, Weiliang;Liu, Zhifeng;Zhao, Yongsheng;Niu, Nana;Zheng, Mingpo
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • During bolted flange assembly, the contact stiffness of some areas of the joint surface may be low due to the elastic interaction. In order to improve the contact stiffness at the lowest position of bolted flange, the correlation model between the initial bolt pre-tightening force and the contact stiffness of bolted flange is established in this paper. According to the stress distribution model of a single bolt, an assumption of uniform local contact stiffness of bolted flange is made. Moreover, the joint surface is divided into the compressive stress region and the elastic interaction region. Based on the fractal contact theory, the relationship model of contact stiffness and contact force of the joint surface is proposed. Considering the elastic interaction coefficient method, the correlation model of the initial bolt pre-tightening force and the contact stiffness of bolted flange is established. This model can be employed to reverse determine the tightening strategy of the bolt group according to working conditions. As a result, this provides a new idea for the digital design of tightening strategy of bolt group for contact stiffness of bolted flange. The tightening strategy of the bolted flange is optimized by using the correlation model of initial bolt pre-tightening force and the contact stiffness of bolted flange. After optimization, the average contact stiffness of the joint surface increased by 5%, and the minimum contact stiffness increased by 6%.

A Fundamental Study on Development of Non-Welded Flexible Joint (무용접 후렉시블 조인트 개발에 관한 기초연구)

  • Oh, Choel-Hoon;Park, Hwan-Chul;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • The flexible joint with bellows and flange is made by welding bellows and flange in general. The welded parts cause a crack or demage in the flexible joint due to continuous vibration and fatigue limit. This paper is concerned with development of flexible joint with non-welded, free rotation of flange and non-packing to improve fatigue failure condition between bellows and flange. The support box and support plate that are components of press part are designed to compress fore-end of bellows only without demage of bellows. The production system of flexible joint is designed with piston attached on the compression side. The simulation is performed using Deform 3D software. As the result of simulation, the shape of compressed bellows was most proper in the compression power of $157kg{\cdot}f$ and any deformation has not occurred at a part besides fore-end. The result show that the production possibility of the designed flexible joint.

A Study on the Contact Characteristics of Metal Ring Joint Gaskets

  • Lee, Min-Young;Kim, Byung-Tak
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.25-31
    • /
    • 2016
  • Gaskets are usually used for the sealing of flange joints. The joint is usually composed of two flanges, a ring gasket and clamping bolts. The metal ring gasket is suitable for pipe flanges, pumps and valve joints in high temperature and high pressure environments. A very high surface stress is developed between a ring type joint gasket and the flange groove when the ring type joint is bolted up in a flange. The dimensions of flanges and ring joint gaskets for the pipe sizes that are in common use are specified in the ANSI codes. However, sometimes it is necessary to make a new design for the flange joint which is not specified in the codes, as the equipment is getting larger and larger in size. This paper presents the contact behavior of Class 600 ring joint gaskets with oval and octagonal cross sections. Five different sizes of gaskets are employed in the analysis, and one of them is newly designed on the basis of analysis results obtained from existing models. Three load steps are used to find the stress, stain and contact pressure etc., and to compare the contact characteristics among the models due to the bolt clamping force and the working surface pressure. ANSYS Workbench version15 is used to conduct the finite element analysis.

Experimental Study on Circular Flange Joints in Tubular Structures (원형강관 플랜지 이음에 관한 실험적 연구)

  • Shin, Chang-Hoon;Han, Duck-Jen
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.119-127
    • /
    • 2002
  • This paper presents a study of the behaviour of bolted circular flange joints in tubular structures. In the tests on nine circular flange joints, different tension forces was applied to the joints and bolt strains, displacements and strains in the joints have been measured. Bolt strain, contact force(prying force) between flanges and stress distribution in a joint have been studied. Different methods used for the design of circular flange joints are described.

A Study on Joint Design Factors for Low Vibration Vehicle (저진동 차량을 위한 결합부 인자 연구)

  • Lee, Jae-Woo;Sung, Young-Suk;Kang, Min-Seok;Lee, Sang-Beom;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.177-184
    • /
    • 2008
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structure performance is greatly affected by crossmember and joint design. While the structural characteristic of these joint vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper present the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. The result can present design guide for high-stiffness vehicle.

  • PDF