• Title/Summary/Keyword: Flammable materials

Search Result 130, Processing Time 0.031 seconds

A Study on Experimental Characteristics in Fire Investigation Techniques of Flammable Liquids (유류화재의 감식기법의 실험적 특성에 관한 연구)

  • Hwang, Taeyeon;Choi, Donmook
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.7-14
    • /
    • 2012
  • This paper is to develop analytical techniques of flammable liquids which have been used for accelerating fire in accidental fires and arsons. We tested the temperature distribution of ceiling, fire patterns on the floor, and existence of flammable liquids and a check with GC/MS about flammable liquids comparing with papers, newspapers, and clothing. Research findings are as follows. The temperature of ceiling is influenced by flame. So gasoline and thinner was observed that combustible materials would be burned by flame. The fire patten on the floor was observed that flammable liquids had specialized pattern comparing combustible materials. When combustible materials on the PVC (Polyvinyl chloride) floor was burned, they didn't react to the gas detector. But flammable liquids had opposite results. After 7 days, we identified components of fire residues with the GC/MS (Gas Chromatography/Mass Spectrometry) about existence of flammable liquids and got components of flammable liquids. Fire investigation is a complicated processes. But we understand characteristics of materials, need detail investigations, and use the GC/MS to analyse flammable materials.

Study on the Combustion Characteristics of Flammable materials and Combustion Accelerants in an Arson (방화 범죄에서 가연성 물질과 연소촉진제의 연소 특성에 관한 연구)

  • Park, Hye-Jeong;Nam, Ki-Hun;Kim, Kwang-Il
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.7-11
    • /
    • 2017
  • The purpose of this study is to recognize the necessity for the management of the available materials in cases of arsons and to prevent arson gaining an understanding of the combustion characteristics of the flammable materials and combustion accelerants in arson cases. We investigated and analyzed the statistical data on arsons and selected flammable materials (wood, paper, synthetic textiles, synthetic resins), and combustion accelerants (gasoline, diesel, solvent) that are frequently used in cases of arson. We conducted a thermogravimetric analysis to assess the thermal properties of the flammable materials. Also, we conducted burning and flame spread rate tests for the purpose of comparing and analyzing the combustion characteristics of the flammable materials and combustion accelerants.

The Review of Globally Harmonized System of Classification and Labelling of Chemicals (위험물질 분류 및 표지에 관한 세계조화시스템 고찰)

  • Kwon, Kyung-Ok
    • Fire Science and Engineering
    • /
    • v.21 no.3
    • /
    • pp.84-90
    • /
    • 2007
  • The UN recommends to the member of OECD to implement the GHS (Globally Harmonized System of Classification and Labelling of Chemicals) that harmonized the flammable materials for classification, labelling, production, transport, storage, handling, usage and discard. There are no significant differences between UN and GHS because GHS is based on physico-chemical hazard and acute toxity of classification and labelling of UN regulation for the classification and transportation of flammable materials. In this paper it was analyzed that the classification, labelling and test method of flammable materials for GHS and the national law of safety management of flammable materials.

Consequence Analysis of flammable Materials at Risk Based Inspection using API-581 (API-581에 의한 위험기반 검사에서 가연성 물질의 사고결과 분석)

  • Lee Hern-Chang;Ryoo Jun;Kim Hwan-Joo;Jang Seo-Il;Kim Tae-Ok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.60-68
    • /
    • 2004
  • Consequence analysis of flammable materials that affect to a risk of facilities was studied at the risk based inspection using API-581. We found that consequence areas (damage area of equipment and fatality area) by release accident of flammable materials showed high value for the case of liquid phase and auto-ignition likely, and that consequence areas of flammable gases decreased as temperature increased and the pipe diameter and pressure decreased at continuous release.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Flammable Binary liquid Mixture by Liquid Phase Compositions - (가연성물질의 폭발한계에 관한 연구 - 액상 조성에 의한 가연성 2성분 액체혼합물의 폭발한계 -)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.103-108
    • /
    • 2001
  • Explosive limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limits are used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult,s law and van Laar equation(activity coefficient model) are shown to be applicable for the prediction of the explosive limits in the flammable ethylacetate-toluene system. The values calculated by the proposed equations were a good agreement with literature data within a given percent. From a given results, by the use of the proposed equations, it is possible to predict explosive limits of the other flammable mixtures. It is hoped eventually that this method will permit the estimation of the explosive Properties of flammable mixtures with improved accuracy and the broader application for other flammable stances.

  • PDF

Prediction of Explosion Limit of Flammable Mixture by Using the Heat of Combustion (연소열을 이용한 가연성 혼합물의 폭발한계 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.19-25
    • /
    • 2006
  • Explosion limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosion limits are used to classify flammable materials according to their relative flammability. Such a classification is important for the safe handling, storage, transportation of flammable substances. In this study, the lower explosion limits(LEL) of the flammable mixtures predicted with the appropriate use of the vapor composition and the heat of combustion of the individual components which constitute mixture. The values calculated by the proposed equations were a good agreement with literature data within a few percent. From a given results, It is to be hoped that this methodology will contribute to the estimation of the explosive properties of flammable mixtures with improved accuracy and the broader application for other flammable substances.

  • PDF

An Experimental Study on the Fire Risk of Electric Heaters According to Contact of Flammable Materials (가연물 접촉에 따른 전기히터의 화재위험성에 관한 실험적 연구)

  • Lee, Sung-Ryong
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.63-71
    • /
    • 2011
  • In this study, it was evaluated the fire risk of an electric heater as representative seasonal appliances. Two type of electric heaters were used in experiments. When electric heaters were operated, temperature variation was measured around the heater. Internal structure was understood by Nondestructive inspection. It was evaluated the tire risk of electric heaters, when flammable materials were positioned ear a heater. It was also estimated the probability of a tire in case of malfunction of a safety tip-over witch. When a heater was operated in a normal condition, temperature was maintained under $80^{\circ}C$ around the heater. The possibility of a fire is very high, when a heater is covered with flammable materials or malfunction of safety parts (safety tip-over switch, anti-overheating devices).

An Experimental Study on the Fire Risk at Welding·Cutting Process (용접·절단 작업시 화재위험성에 관한 실험적 연구)

  • Lee, Sung-Ryong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, it was evaluated the fire risk during welding cutting tasks. Welding-cutting machines are representatively used at construction sites. Inverter AC/DC TIG welding macnine and inverter air plasma cutting machine were used in experiments. Temperature of spreaded cinders was measured using a thermal camera. Cinder sizes and spread range were measured according to the height and input current. It was also evaluated the fire risk during welding-cutting process, when flammable materials were located around the working area. There were used hay, dust fence, urethane foam, vinyl, paper and oil as flammable materials. Temperature of spreaded cinders was reached at about $450^{\circ}C$. Cinders were spread approximately 4.7 m, when a worker carried out cutting process at 2.5 m height. The possibility of a fire is very high, when flammable materials were located around the working area.

Arson Fire Analysis Involving the Use of Flammable Liquilds as Accelerants (인화성액체를 촉진제로 사용한 방화화재의 감식기법에 관한 연구)

  • Choi, Min-Ki;Han, Dong-Hun;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.64-72
    • /
    • 2014
  • Flammable liquids residues in fire debris and pyrolysis products of flammable materials were analyzed by using Gas detecting tube, Gas Chromatograph/Mass Spectrometers (GC/MS), and Pyrolyzer. Comparison studies between chemical components detected in debris fired with and without Flammable liquids were performed. Though Flammable liquids were not present in debris, Gas detecting tube colors were also changed. Chemical components produced from conventional combustions were different from those produced from pyrolysis. Due to the difference of the reaction conditions between combustions and pyrolysis, different chemical products were produced. Petrochemical products of PVC wood-linoleum block could produce ignitable chemicals, such as toluene, ethylbenzene, undecane, and dodecane. So, for better fire investigation more consideration of those chemicals will be porformed.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Ternary System by Means of Solution Thermodynamics and MRSM Model - (가연성물질의 폭발한계에 관한 연구 - 용액열역학 및 MRSM 모델에 의한 3성분계 폭발한계 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.91-97
    • /
    • 2005
  • The research on the explosive limits is one of fundamental fields of combustion process, and information on the explosive limits of mixture of fuel and oxidant, with or without additives, is very important for the prevention in industrial fire and explosion accidents. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Batten, Le Chatelier and MRSM(modified response surface methodology) model. In this study, the reference values of lower explosive limits(LEL) of the ethanol+toluene+ethylacetate system were compared with the calculated values by using the solution thermodynamics and the MRSM model, respectively. The values calculated by the proposed equations were a good agreement with literature data within a few percent. By means of this methodology, it is possible to evaluate reliability of experimental data of the lower explosive limits of the flammable mixtures. Also, from given results, it is possible to predict explosive limits of the other flammable liquid mixtures used in the chemical process by the use of the proposed equations.