• Title/Summary/Keyword: Flammable Substances

Search Result 76, Processing Time 0.027 seconds

A Study on Combustion Patterns of Flammable Liquids by Contained Oil Test (담유 실험에 의한 인화성 액체의 연소 패턴 해석에 관한 연구)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.14-20
    • /
    • 2014
  • The purpose of this study is to analyze combustion patterns by filling a specific container with a flammable liquid and performing combustion tests in a divided space. The container used for the test is made of plastic, 20 mm in depth and 150 mm in width. After the liquid was ignited, its combustion process was photographed using a digital camera and video camera. It was found that in the case of benzene, the flame reached its peak at the fastest speed about 60 s while in the case of alcohol, the flame reached its peak at the lowest speed about 360 s, which is approximately six times slower than the benzene. In most cases, when the flame reached its peak, smoke generated was dark as the plastic container and flammable liquid were combusted simultaneously. After completion of the combustion, it was possible to sample oil vapor from all flammable liquids excluding soybean oil as a result of the examination of oil vapor using a crime investigation tube. That is, it can be seen that there is significant difference in flame propagation speed, pattern, etc., depending on the combustible substances.

An experimental study on measurement of combustion rate of combustible substances (가연성(可燃性) 물질(物質)의 중량(重量) 연소속도(燃燒速度) 측정(測定)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Young-Zo;Han, Eung-Gyo;Kim, Sang-Wook;Park, Won-Young
    • Journal of the Korean Society of Safety
    • /
    • v.2 no.1
    • /
    • pp.11-16
    • /
    • 1987
  • A study was performed on combustion rates of three kinds of combustible substances under a few different combustion conditions. To measure the combustion rates by weight method, I contrived an apparatus using a sensitive load cell. The experimental results by the combustion tests of various combustible substances shows that the combustion circumstances, eg., air supply condition and the existence of flammable oil. And it is found that the time constant T in case of oil absence is smaller than that in case of oil existence, and the time constant T in case of enforced air-entrained condition is greater that in case of natural air-entrained condition.

  • PDF

A Study on Estimation of Lower Explosive Limits of Alcohol Compounds (알코올화합물의 폭발하한계 추산에 관한 연구)

  • Dong-Myeong Ha;Yong-Chan Choi;Haejin Oh;Su-kyung Lee
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.291-296
    • /
    • 2002
  • Flammable compounds are indispensible in domestic as well as in industrial fields as fuel, solvent and raw materials. The fire and explosion properties necessary for safe storage, transport, process design and operation of handling flammable substances are lower explosive limits(LEL), upper explosive limits(UEL), flash point, fire point, AIT(auto ignition temperature), MIE(minimum ignition energy), MOC(minimum oxygen concentration) and heats of combustion.

  • PDF

The Lower Flash Points of the Flammable and Non-flammable Liquid Mixture

  • Choi, Yong-Chan;Kim, Seung-Jong;Shin, Yong-Bum;Kim, Han-Dol;Jung, Se-Hoon;Lee, Sung-Jin;Ha, Dong-Myeong
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.207-212
    • /
    • 2003
  • The flash point are used to classify combustible liquids according to their relative flammability. The regulations for the safe handling, transportation, and storage of such substances are dependent on this classification, and the flash points are therefore of great important in the chemical industry.(omitted)

  • PDF

Prediction of Explosion Limits of Ethers by Using Heats of Combustion and Stoichiometric Coefficients (연소열과 화학양론계수를 이용한 에테르류의 폭발한계의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.44-50
    • /
    • 2011
  • Explosion limit is one of the major combustion properties used to determine the fire and explosion hazards of the flammable substances. In this study, the lower explosion limit(LEL) and upper explosion limit(UEL) of ethers were predicted by using the heat of combustion and stoichiometric coefficients. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other flammable ethers.

Electrostatic Discharge and the Minimum Ignition Energy Measurement of Three-Component Flammable Gas Mixtures (정전기(靜電氣) 방전(放電)과 삼성분계(三成分系) 가연성(可燃性) 혼합기체(混合氣體)의 최소점화(最小點火) Energy 측정(測定)에 관한 연구(硏究))

  • Lee, Gwan-Hyung;Choi, Sang-Won;Chung, Jae-Hee;Lee, Duck-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1819-1823
    • /
    • 1997
  • When flammable gases are mixed with air or oxygen in the explosion concentration range and are ignited by sufficiently large electrostatic discharge energy, they may explode causing severe disaster in workplaces. The minimum ignition energy (MIE) of single gas-air mixtures has been already investigated by many researchers, but the MIE of mixtures of more than three substances is not examined yet. The purpose of this study is to investigate the MIE of several three-component gas mixtures experimentally. The result of our experiment shows that the MIE of some gas mixtures is quite different from that we expected based on the characteristics of individual gas-air mixture.

  • PDF

A Study on Flammability Risk of Flammable Liquid Mixture (가연성 액체 혼합물의 인화 위험성에 관한 연구)

  • Kim, Ju Suk;Koh, Jae Sun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.701-711
    • /
    • 2020
  • Purpose: In this study, the risk of flammability of a liquid mixture was experimentally confirmed because the purpose of this study was to confirm the increase or decrease of the flammability risk in a mixture of two substances (combustible+combustible) and to present the risk of the mixture. Method: Flash point test method and result processing were tested based on KS M 2010-2008, a tag sealing test method used as a flash point test method for crude oil and petroleum products. The manufacturer of the equipment used in this experiment was Japan's TANAKA. The flash point was measured with a test equipment that satisfies the test standards of KS M 2010 with equipment produced by the company, and LP gas was used as the ignition source and water as the cooling water. In addition, when measuring the flash point, the temperature of the cooling water was tested using cooling water of about 2℃. Results: First of all, in the case of flammable + combustible mixtures, there was little change in flash point if the flash point difference between the two substances was not large, and if the flash point difference between the two substances was low, the flash point tended to increase as the number of substances with high flash point increased. However, in the case of toluene and methanol, the flash point of the mixture was lower than that of the material with a lower flash point. Also, in the case of a paint thinner, it was not easy to predict the flash point of the material because it was composed of a mixture, but as a result of experimental measurement, it was measured between -24℃ and 7℃. Conclusion: The results of this study are to determine the risk of mixtures through experimental studies on flammable mixtures for the purpose of securing the effectiveness of the details of the criteria for determining dangerous goods in the existing dangerous goods safety management method and securing the reliability and reproducibility of the determination of dangerous goods Criteria have been presented, and reference data on experimental criteria for flammable liquids that are regulated in firefighting sites can be provided. In addition, if this study accumulates know-how on differences in test methods, it is expected that it can be used as a basis for research on risk assessment of dangerous goods and as a basis for research on dangerous goods determination.

Multivariate Statistical Analysis and Prediction for the Flash Points of Binary Systems Using Physical Properties of Pure Substances (순수 성분의 물성 자료를 이용한 2성분계 혼합물의 인화점에 대한 다변량 통계 분석 및 예측)

  • Lee, Bom-Sock;Kim, Sung-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2007
  • The multivariate statistical analysis, using the multiple linear regression(MLR), have been applied to analyze and predict the flash points of binary systems. Prediction for the flash points of flammable substances is important for the examination of the fire and explosion hazards in the chemical process design. In this paper, the flash points are predicted by MLR based on the physical properties of pure substances and the experimental flash points data. The results of regression and prediction by MLR are compared with the values calculated by Raoult's law and Van Laar equation.

  • PDF

Experimental Study on Ignition and Explosion Hazard by Measuring the Amount of Non-volatile (NVR) and Explosion Limit of Biodiesel Mixture (바이오디젤 혼합물의 가열잔분측정과 폭발한계 측정을 통한 발화 및 폭발위험성에 대한 실험적인 연구)

  • Kim, Ju Suk;Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.182-193
    • /
    • 2022
  • Purpose: By measuring and evaluating the risk of biodiesel through non-volatile residue (NVR) and flash point and explosion limit measurement at a specific temperature according to ASTM test standards, the risk of chemical fire causative substances is identified and a universal evaluation method By derivation and securing the risk-related data of the material, it can be used for the identification and analysis of the cause of the fire, and it can be applied to the risk assessment of other chemical substances Method: In order to measure the risk of biodiesel, it was measured using the non-volatile residue(NVR) measurement method, which measures how much flammable liquid is generated at a specific temperature. Heating was tested by applying KS M 5000: 2009 Test Method 4111. In addition, the flash point was measured using the method specified in ASTM E659-782005, and the energy supply method was measured using the constant temperature method. In addition, the explosion limit measurement was conducted in accordance with ASTM E 681-04 「Standard test method for concentration limits of flammability of chemicals(Vapors and gases)」 test standard. Result: As a result of checking the amount of combustible liquid by the non-volatile residue (NVR)measurement method, the non-volatile residue(NVR) of general diesel when left at 105±2℃ for 3 hours was about 30% (70% of volatile matter) and about 4% of biodiesel. In addition, similar results were obtained for the non-volatile residue(NVR)heating temperature of 150±2℃, 3 hours and 200±2℃ for 1 hour, and white smoke was generated at 200℃ or higher. In addition, similar values were obtained as a result of experimentally checking the explosion (combustion) limits of general diesel, general diesel containing 20% biodiesel, and 100% biodiesel. Therefore, it was confirmed that the flammability risk did not significantly affect the explosion risk. Conclusion: The results of this study suggested the risk judgment criteria for mixtures through experimental research on flammable mixtures for the purpose of securing the effectiveness, reliability, and reproducibility of the details of the criteria for determining dangerous substances in the existing Dangerous Materials Safety Management Act. It will be possible to provide reference data for the judgment criteria for flammable liquids that are regulated in the field. In addition, if the know-how for each test method is accumulated through this study, it is expected that it will be used as basic data in the research on risk assessment of dangerous substances and as a basis for research on the determination of dangerous substances.

Prediction of Temperature Dependence of Explosion Limits and Interrelationship of Explosion Characteristics for Akylketones (알킬케톤류의 폭발 특성치 간의 상관관계 및 폭발한계의 온도의존성 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.7-13
    • /
    • 2006
  • In order to evaluate the fire and explosion involved and to ensure the safe and optimized operation of chemical processes, it is necessary to know combustion characteristics. The explosion limit, the heat of combustion, flame temperature and temperature dependence of the lower explosive limit are the major combustion characteristics used to determine the fire and explosion hazards of the flammable substances. The aim of this study is to investigate interrelationship of explosion characteristics and the temperature dependence of the lower explosion limit at elevated temperature for akylketones. By using the reference data, the empirical equations which describe the interrelationships of explosion properties of akylketones have been derived. Also, the new equations using the mathematical and statistical methods for predicting the temperature dependence of lower explosion limits of akylketones on the basis of the literature data are proposed. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other flammable substances.

  • PDF