• Title/Summary/Keyword: Flameless regenerative burner

Search Result 3, Processing Time 0.013 seconds

The Development of Flameless Regenerative Burner for the Industrial Furnaces (공업로용 무화염식 축열버너의 국산화 개발)

  • Kim, Won-Bae;Yang, Je-Bok
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.27-33
    • /
    • 2010
  • Recently, much attention has been paid to utilizing highly preheated air up to $1,000^{\circ}C$ through waste gas in industrial furnaces. The regenerative burner technology has shown to provide significant reduction in energy consumption (up to 60%), downsizing of the equipment (about 30%) and lower emissions (about 30%) while maintaining high thermal performance of the system since 2000. The object of this study is to develop the flameless regenerative burner for industrial furnaces based on the FLOX(Flameless Oxidation) principle and it has been designed and manufactured as pilot scale. Performance tests are experimentally done and their results are discussed. They showed 1) a very good uniformity in temperature distribution, 2) about 100 ppm in NOx at the temperature $1,300^{\circ}C$, 3) about 95% in temperature efficiency. Besides, the regenerative burner has advantage in easy maintenance and high usage rate of regenerator due to the separate and portable type of heat exchanger.

The Effect of Flue-gas Recirculation on Combustion Characteristics of Self Regenerative Low NOx Burner (자기축열식 저 NOx 연소기에서 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Kim, Jong-Gyu;Dong, Sang-Keun;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced.

  • PDF

The effect of flue-gas recirculation on combustion characteristics of regenerative low NOx burner (축열식 저 NOx 연소기의 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Yoon, Young-Bin;Dong, Sang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.97-104
    • /
    • 2002
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced

  • PDF