• 제목/요약/키워드: Flame-retardant effects

Search Result 39, Processing Time 0.022 seconds

Economic effect analysis of flame retardant aluminum screen development

  • Park, Bum-Soon;Han, Chung-Soo;Kang, Tae-Hwan;Lee, Hee-Sook
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.496-505
    • /
    • 2016
  • The purpose of this study was to investigate the economic effects of a flame retardant aluminum screen developed by a company Economic effects were analyzed in terms of micro and macro-economic aspects. In the macro-economic aspect, economic effects were analyzed under the assumptions that the total import volume of flame retardant aluminum screen was approximately $50m^2$ in 2015 and that possible import substitution rates were 100%, 80%, and 60%. Results showed economic values of 2.25 billion won (100% import substitution rates), 1.8 billion won (80% import substitution rates), and 1.35 billion won (60% import substitution rates). If existing farms which had been using imported flame retardant aluminum screen replaced it newly developed with the flame-retardant aluminum screen developed in this study at rates of 100%, 80%, and 60%, the farms could save 750 million won, 60 million won, and 45 million won, respectively. Furthermore, the social cost savings from fire prevention could be 1.184 billion won. In the micro-economic aspect, if a farm with a typical-size ($1,000m^2$) greenhouse growing red pepper wanted to install flame retardant aluminum screen instead of generic aluminum screen, the farm may only pay an additional cost of 720,000 won. In comparison, if the farm chose fire insurance instead of flame-retardant aluminum screen, then the farm would pay 21,000,000 won for fire insurance. The above results show that the economic effect of flame retardant aluminum screen developed by the company would be be very efficient compared to the imported one.

Comparative Analysis of Flame Retardant Performance of Japanese Cypress Plywood Based on the Main Ingredients of Fire Retardant Paint (도료의 주성분에 따른 편백 합판의 방염성능 비교 분석)

  • Soo-Hee Lim;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2023
  • The purpose of this study is to compare and analyze the flame retardant performance of Japanese cypress(Chamaecyparis obtusa) plywood, commonly used in indoor decoration, furniture, and tableware, by treating it with three different fire retardants with different primary ingredients. The experiment was conducted in compliance with Article 31, Paragraph 2 of the Enforcement Decree of the Fire Facilities Installation and Management Act and Articles 4 and 7-2 of the Flame Retardant Performance Standards. After flame time, after glow time, char length, and char area were measured. As a result, first, after flame time was measured at 0 seconds regardless of whether the flame retardant treatment was applied. Second, after glow time was relatively long, measuring 22.7 seconds without treatment, which is likely due to the weak fire resistance and high concentration of carbon monoxide generated by the chemical characteristics of the Japanese cypress itself. Third, it was confirmed that the effects of the primary ingredient, phosphorus, in the flame retardant treatment varied depending on the technological development of the manufacturers of the same species of Japanese cypress plywood. In the future, it is expected that the results of this study will provide fundamental data to select flame retardant treatments that show high flame retardant performance according to the botanical characteristics of the wood.

A Study on Combustion Characteristics of Fire Retardant Treated Wood (난연처리된 목재의 연소특성에 관한 연구)

  • Park, Hyung-Ju;Kang, Young-Goo;Kim, Hong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.4 s.132
    • /
    • pp.38-44
    • /
    • 2005
  • This study was carried out to investigate the combustion characteristics of flame retardant treated wood by water-soluble flame retardants which are made from mixture of aqueous solution of monoammonium phosphate, sodium borate and zinc borate. The combustion characteristics for flame retardant treated wood were carried out using thermal analysis (TGA, combustion heat) and flame retardant test (LOI, flame propagation). The results of thermal analysis and flame retardant test are as follows; 1) The sample treated by F4 showed excellent flame retardant effects in almost all of combustion characteristics. 2) From TGA curves, all the samples undergo pyrolysis and oxidation in two main discrete steps. 3) The effect of flame retardant for softwood is higher than those for hardwood, and the combustion heat has decreased with increase of the content of flame retardant. 4) LOI values are almost similar in flame retardant treated wood samples. The range of LOI is from 24 to 30. However, these values are much higher than LOI value of non-treated wood sample. 5) The blended aqueous solution had a final in the range of about pH 8.4, and a slight odor of ammonia.

Synthesis of a Novel Phosphorus-containing Flame Retardant for Epoxy Resins

  • Xu, Hong-Jun;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2643-2646
    • /
    • 2009
  • In this study, a novel phosphorus-containing flame retardant copolymer of spirocyclic pentaerythritol di(phosphate monochloride) and bisphenol S (SPD-BS) was successfully synthesized and used as a flame retardant in diglycidyl ether of bisphenol A (DGEBA) epoxy resins. The chemical structure of the SPD-BS was characterized using FT-IR and $^1H$ NMR spectra. The thermal properties were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The effects of SPD-BS and nano-$CaCO_3$ on the flame-retardant properties of DGEBA/SPD-BS systems were evaluated by measurement of the burning rate. As a result, the thermal stabilities of the DGEBA/SPD-BS systems were decreased with increasing SPD-BS content. The flame-retardant properties and char yields of the systems were significantly increased when SPD-BS content increased. The synergism of nano-$CaCO_3$ incorporation on flame retardancy was found for the DGEBA/SPD-BS systems.

Physical Properties and Flame Retardant Effects of Polyurethane Coatings Containing Pyrophosphoric Lactone Modified Polyesters (피로포스포릭 락톤 변성폴리에스테르를 함유한 폴리우레탄 난연도료의 물성 및 난연효과)

  • Jung, Choong-Ho;Choi, Yong-Ho;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.203-211
    • /
    • 2000
  • Pyrophosphoric lactone modified polyester(PATT) that contains two phosphorous functional groups in one unit base resin structure was synthesized to prepare a non-toxic reactive flame retardant coatings. Then the PATT was cured at room temperature with isocyanate, Desmodur IL, to get a two-component polyurethane flame retardant coatings(PIPUC). Comparing the physical properties of the films of PIPUC with the film of non-flame retardant coatings, there was no degradation observed in physical properties by the introduction of a flame-retarding component into the resin. We found that the char lengths measured by $45^{\circ}$Meckel burner method were $3.1{\sim}4.4cm$ and LOI values recorded $27{\sim}30%$. These results indicate that the coatings prepared in this study is good flame retardant one. The surface structure of coatings investigated with SEM does not show any defects and phase separation.

Physical Properties and Flame-Retardant Effects of Polyurethane Coatings Containing Pyrophosphoric Lactone Modified Polyesters (파이로포스포릭 락톤 변성 폴리에스터를 함유한 폴리우레탄 도료의 물성 및 난연 효과)

  • 정동진;김성래;박형진;박홍수;김승진
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.169-175
    • /
    • 2003
  • Pyrophosphoric lactone modified polyester (PATT) containing two phosphorous functional groups in one unit structure was synthesized to prepare a non-toxic reactive flame-retardant coatings. Then the PATT was cured at room temperature with isocyanate, toluene diisocyanate-isocyanurate , to get a two-component polyurethane flame-retardant coatings (PIPUC). Comparing physical properties of the films of PIPUC with those of film of non-flame-retardant coatings, there was no deterioration observed in physical properties by the introduction of a flame-retarding component into the resin. We found that the char lengths measured by 45$^{\circ}$ Meckel burner method were 3.1∼4.4 cm and LOI values recorded 27∼30%. These results indicate that the coating prepared in this study is a good flame-retardant. The surface structure of coatings investigated with SEM does not show any defects and phase separation.

Studies on Plywood Treated Fire-Retardant - III. The Fire-Retardant Degree of Monoammonium Phosphate Treated Plywood (합판(合板)의 내화처리(耐火處理)에 관(關)한 연구(硏究) - III. 제1인산(第一燐酸)암모늄처리합판(處理合板)의 내화도(耐火度))

  • Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.21-28
    • /
    • 1986
  • Plywood used for construction as a decorative inner material is inflammable and can fire accident, causing destruction of human life and property. In this study, 3.5mm Kapur plywoods were soaked in the 23% monoammonium phosphate solutions by cold soaking method 3, 6, 9hrs and hot-cold bath method for 3/3hrs, and redrying was carried out by press-drying at the platen temperature of 110, 130, 160, 180$^{\circ}C$, and then fire test was carried out to investigate burning point, flame exhausted length, frame spread length, back side carbonized area and weight loss. The results are as follows; 1. In cold soaking method for 3, 6, 9hrs. retentions of monoammonium phosphate were 0.377, 0.448, 0.498kg/(30cm)$^3$ respectively, and in hot-cold bath method for 3/3hrs, the retention was 1.331kg(30cm)$^3$ that exceeded the minimum retention 1.124kg/(30cm)$^3$. 2. Correlation coefficients among the variable were shown in table 2. From the table, it could be recognized that there were close negative correlations between the treatment and burning point, flame spread length, back side carbonized area, flame exhausted time and weight loss, and there was negative correlation between treating time and back side carbonized area, but there was positive correlation between platen temperature and burning point. 3. From table 3, it can be observed that there were highly significant differences for burning point, flame spread length, flame exhausted time, back side carhonized area, weight loss between treatments. And in 2-way interactions, there were also highly significant for burning point, flame spread length, flame exhausted time, weight loss between time x treatment. 4. It was observed that burning point, flame exhausted time, flame spread length, back side carbonized area, and weight loss in fire-retardant treated plywood were the best effects in fire-retardant treated plywood, water treated plywood and nontreated plywood. In conclusion, I can estimate that absorbed chemical contents by hot-cold bath method for 3/3hrs, have a lot of effects on fire-retardant factors such as burning point, flame spread length, flame exhausted time, backside carbonized area and weight loss, but platen temperatures have a little effects on the fire factors.

  • PDF

Flame-retarding effects depending on the number of phosphonate groups attached to phosphorus flame-retarding compounds and coating binder resins (인계 난연화합물 및 코팅 바인더 수지에 부착된 phosphonate group에 따른 난연효과)

  • Park, Hyo-Nam;Kim, Hae-Rim;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1678-1686
    • /
    • 2021
  • In this study, we prepared phosphorous flame-retarding coating solutions by mixing triphosphate (3 phosphonate), phytic acid (6 phosphonate), or ammonium polyphosphate (10 phosphonate) with boric acid as a crosslinking agent and acryl resin binder. Prepared phosphorous flame-retarding coating solutions were coated onto non-woven fabrics, respectively, to obtain high flame-retarding effects. These prepared flame-retardant non-woven fabrics were evaluated using smoke density standard test (ASTM E662), limit oxygen index standard test (ISO E622), and vertical burning standard test (UL 94). Their flame-retarding effects were affected by the number of phosphonate groups. Regardless of natural or synthetic binder resins, their effects showed the following order: ammonium polyphosphate > phytic acid > triphosphate. Natural hydrocarbon compounds were also examined to determine the possible retardancy of binder resins. Results showed that natural hydrocarbon binder resins could be used for preparing fire-retardant nonwoven fabrics.

A Study on the Effect of Various Brominated Flame Retardants and the Compatibilities Between Polymer and Flame Retardants in PC/ABS Blend System (PC/ABS 블랜드의 난연화 및 상용성에 관한 연구)

  • 이영순;전종한
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.3
    • /
    • pp.63-68
    • /
    • 1990
  • The effects of various brominated flame retardants were investigated in PC/ABS blend system. The compatibilities between polymers and flame retardants were expected with the solubility parameter using group contribution theory. Tetrabromobisphenol A carbonate oligomer, among the flame retardants in this experiment, has been shown good miscibility for PC and ABS, respectively. But polydibromophenylene oxide and octabromodiphenyl oxide has immiscibility. The flame retardant PC/ABS blends containning tetrabromobisphenol A carbonate oligomer have been exhibited higher mechanical properties, tensile strengths and notch Izod impact strengths, at varlous content of flame retardants, than containning other flame retardants. It could be seen that the trends of mechanical properties for the flame retardant PC/ABS blends have a good concidence with the expectation of compatibility.

  • PDF

A Study on the Smoke Hazard Increase of Flame-retardant-treated Interior Decorative Textile -Focused on Viscose Rayon Textile Wallcovering- (난연 처리된 실내장식섬유의 연기 위해성 증가에 관한 연구 -비스코스 레이온 섬유 벽지를 중심으로-)

  • Lee, Joonhan;Kim, Sun Mee
    • Journal of Fashion Business
    • /
    • v.24 no.3
    • /
    • pp.30-39
    • /
    • 2020
  • This study was conducted to identify problems in domestic flame-retardant performance specifications. Currently, the domestic wallcovering anti-inflammatory regulations are not prepared for damage caused by smoke, with the carbonized area as the main function. In particular, given that smoke is the main cause of human casualties and injuries in a fire, it is reasonable that the flame density and toxicity of the wallcovering should also be the main performance indicators. The scope and method of research in this study were as follows. First, a prior study related to fire on various wallcoverings was considered. Second, it raised questions about the effects of smoke in the event of a fire and domestic anti-inflammatory performance tests. Third, textile wallcovering samples were manufactured with viscose rayon for experimental verification of the problems and tested by Korean and EU standards without flame retardant processing to analyze the differences between each regulation. Fourth, the performance of flame retardant wallcovering according to Korean standards was evaluated using smoke density and harmful gas testing methods. The results of each test were as follows. Non-fire retardant wallcovering was rejected by Korea standards. However, B-s1.d0 in Europe. Smoke density testing and harmful gas by domestic combustion processing on the same sample showed that the smoke density increased about 4.3 times more than before, and the harmful gas test showed that the suspension of the post-processing sample slowed earlier than the non-processed sample.