• 제목/요약/키워드: Flame stretch

검색결과 45건 처리시간 0.026초

삼지화염의 전파속도에 대한 속도구배의 영향에 관한 실험적 연구 (Experimental Study on the Effect of Velocity gradient on Propagation speed of Ttribrachial flame in Laminar Coflow Jets)

  • 김민국;원상희;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.221-228
    • /
    • 2005
  • The tribrachial flame in laminar coflow jet has been investigated experimentally with unsteady propagating condition. In this experiment, we found that the tribrachial point has an angle of flame surface because the location of tribrachial point is not on the base point of flame but on the inclined surface of flame. This angle of Flame surface at tribrachial point are increasing when the flame is approaching to the nozzle exit. With considering this angle of flame surface, the radial velocity gradient can affect flame propagation speed by increasing flow-stretch effect. The propagation speed of tribrachial flame was calculated with including above stretch effect. The speed decreases with increasing velocity gradient due to the increment of stretch effect.

  • PDF

대향류 메탄/공기 예혼합화염의 소염특성에 관한 수치해석적 연구 (A Numerical Study on the Extinction of Methane/Air Counterflow Premixed Flames)

  • 정대헌;정석호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1982-1988
    • /
    • 1995
  • Methane/Air premixed flames are studied numerically, using a detailed chemical model, to investigate the flame strech effects on the extinction in a counterflow. The finite difference method, time integration and modified Newton iteration are used, and adaptive grid technique and grid smoothing have been employed to adjust the grid system according to the spatial steepness of the solution profiles. Results show that the flame stretch, or the conventional nondimensionalized stretch having the tangential flow characteristics of the stretched flame alone cannot adequately describes the extinction phenomena. On the other hand, the local flame stretch having both the normal and tangential flow characteristics of the stretched flame can give a proper explanation to the extinction of the symmetric planar premixed flames stabilized in a counter flow. The extinction condition were found to be a constant local stretch regardless of the equivalence ratio.

과농-희박 예혼합화염의 상호작용에 관한 연구 (On the interaction of rich-lean premixed flames)

  • 이충훈;정석호
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.991-1000
    • /
    • 1987
  • 본 연구에서는 과농-희박 연료장에서 화염들의 상호작용에 관하여 이론적 해 석 및 실험적 검증을 통해 연구하였고, 이 중 특히 두 개의 예혼합화염 사이에 확산화 염이 형성되어 세 개의 화염이 존재하는 영역을 고찰하였다.

국소화염특성을 고려한 예혼합화염의 소염특성에 관한 수치해석 (Numerical study on extinction of premixed flames using local flame properties)

  • 정대헌;정석호
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.125-131
    • /
    • 1997
  • The extinction of premixed flames under the influence of stretch is studied numerically. A wide range of fuel (hydrogen, ethylene, acetylene, methane, propane and methanol) and air mixtures are established in an opposed jet and their flame properties such as flame speed, flame thickness, thermal diffusivity, and stretch rate at extinction are computed. Computations are made using several chemical kinetic mechanism (Smooke, Kee et al. and Peters). The major result is that, in contrast to the various previous claims of extinction Karlovitz number varying over three orders of magnitude, it is found to be constant around two for all of the mixtures tested. That is, premixed flames are extinguished when the physical flow time decreases (due to increased stretch rate) to the point where it approximately equals the chemical reaction time. Here the relevant chemical reaction time is not the one computed using the one-dimensional flame properties as originally suggested in the formulation of Karlovitz number, but rather it is the one obtained using the stretched flame properties which fully reflect the effect of straining on the flame structure.

상호작용을 하는 희박-희박 예혼합화염의 소화특성에 관한 연구 (On the Extinction Characteristics of the Interacting Lean-Lean Premixed Flames)

  • 정석호;김종수
    • 대한기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.232-240
    • /
    • 1986
  • 본 연구에서는 대향류 유동장에서 두 예혼합화염의 후류 상호작용을 Fig.1 과 같은 계를 이용하여 일반적인 Lewis수에 대하여 접합 점근 전개 방법으로 해석하 여, 강한 상호작용을 나타내는 구간의 변화가 확산선호도의 영향임을 규명하고, 화염 스트레치가 상호 작용하는 예혼합화염의 소화특성에 미치는 영향을 파악하였다.

희박연소에서 발생하는 메탄의 농도 상호작용과 삼중화염에 대한 연구 (Concentration Interaction of Premixed and Triple-layer Flames in Lean Burn with Methane Fuel)

  • 오태균;정석호
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.171-178
    • /
    • 2006
  • The performance in the practical combustion system including reciprocating engines and gas turbine combustors is being much governed by turbulent reacting flow that is often analyzed by both a laminar flamelets concept and flame interaction. The characteristics of laminar flame interaction have been investigated numerically to provide basic understanding of wrinkled turbulent flames under concentration interaction resulting from inhomogeneity in fuel-air mixing, especially focused on the transition of flame characteristics such as diffusion flame, partially premixed diffusion flame, and triple-layer flame by the variation in the degree of premixedness. The extinction stretch rates to the premixedness have also been obtained in this paper. The boundary defining the regime of the existence of triple-layer flames as functions of both stretch rate and premixedness has been determined which agrees well with previously reported experiment measuring OH radical concentration peaks based on PLIF.

A Study of the Propagation of Turbulent Premixed Flame Using the Flame Surface Density Model in a Constant Volume Combustion Chamber

  • Lee, Sangsu;Kyungwon Yun;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.564-571
    • /
    • 2002
  • Three-dimensional numerical analysis of the turbulent premixed flame propagation in a constant volume combustion chamber is performed using the KIVA-3V code (Amsden et. al. 1997) by the flame surface density (FSD) model. A simple near-wall boundary condition is eaployed to describe the interaction between turbulent premixed flame and the wall. A mean stretch factor is introduced to include the stretch and curvature effects of turbulence. The results from the FSD model are compared with the experimental results of schlieren photos and pressure measurements. It is found that the burned mass rate and flame propagation by the FSD model are in reasonable agreement with the experimental results. The FSD combustion model proved to be effective for description of turbulent premixed flames.

The effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame

  • Chung, E.H.;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.139-154
    • /
    • 1998
  • Under certain circumstance, premixed turbulent flame can be treated as wrinkled thin laminar flame and its motion in a hydrodynamic flow field has been investigated by employing G-equation. Past studies on G-equation successfully described certain aspects of laminar flame propagation such as effects of stretch on flame speed. In those studies, flames were regarded as a passive interface that does not influence the flow field. The experimental evidences, however, indicate that flow field can be significantly modified by the propagation of flames through the volume expansion of burned gas. In the present study, a new method to be used with G -equation is described to include the effect of volume expansion in the flame dynamics. The effect of volume expansion on the flow field is approximated by Biot-Savart law. The newly developed model is validated by comparison with existing analytical solutions of G -equation to predict flames propagating in hydrodynamic flow field without volume expansion. To further investigate the influence of volume expansion, present method was applied to initially wrinkled or planar flame propagating in an imposed velocity field and the average flame speed was evaluated from the ratio of flame surface area and projected area of unburned stream channel. It was observed that the initial wrinkling of flame cannot sustain itself without velocity disturbance and wrinkled structure decays into planar flame as the flame propagates. The rate of decay of the structure increased with volume expansion. The asymptotic change in the average burning speed occurs only with disturbed velocity field. Because volume expansion acts directly on the velocity field, the average burning speed is affected at all time when its effect is included. With relatively small temperature ratio of 3, the average flame speed increased 10%. The combined effect of volume expansion and flame stretch is also considered and the result implied that the effect of stretch is independent of volume release.

  • PDF

축방향 유속변동에 의한 관내 예혼합화염의 소화특성에 관한 이론적 연구 (A theoretical study on the extinction of the premixed flame in a tube caused by a logitudinal velocity variation)

  • 김남일;신현동;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제23회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.111-118
    • /
    • 2001
  • Many previous researches on the premixed flame in a tube have treated the unsteady flame behaviors but more detailed and fundamental research has been necessary. The study on the flame stabilization condition in a tube and the unsteady behaviors were carried out in recent years. In this paper, a mean velocity variation larger than the burning velocity was introduced to the stabilized flame for a period longer than the reaction time scale in order to examine the unsteady behavior of flame propagation. Through our previous work it was found that the effects of non-unity Lewis number on the flame extinction was negligible in the extinction by the boundary layer even though they were important in the extinction by the acoustic instability. In this paper we carried out an analytic approach to explain the previous experimental results. It showed that the heat loss, from a flame to the wall, is not a sufficient condition but a required one for the growth of the extinction boundary layer. In addition, the quenching and the flame stretch, under a strong unsteady flow field, are the main causes of the eventual extinction.

  • PDF

메탄/공기 대향류 예혼합화염의 NO 발생특성에 관한 수치해석 (A Numerical Analysis of the NO Emission Characteristics in $CH_4/Air$ Counterflow Premix Flame)

  • 조은성;정석호
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.22-27
    • /
    • 2004
  • Lean premix combustion is a best method in low $NO_x$ gas turbine combustor and we must know the characteristics of NO emission in high temperature and pressure condition in premix flame. Numerical analysis was performed to investigate the NO emission characteristics by adopting a counterflow as a model problem using detailed chemical kinetics. Methane $(CH_4)$ was used as a test fuel which is the main fuel of natural gas. The tested parameters were stretch rate, equivalence ratio, initial temperature, and pressure in premix flame. Results showed that NO emission was high in low stretch rate, near stoichiometric equivalence ratio, high initial temperature, and high pressure. Also, the pressure effect was sensitive in high temperature condition.

  • PDF