• 제목/요약/키워드: Flame Propagation Speed

검색결과 138건 처리시간 0.023초

Experimental Study on Comparison of Flame Propagation Velocity for the Performance Improvement of Natural Gas Engine

  • Chung Jin Do;Jeong Dong Soo
    • 한국환경과학회지
    • /
    • 제14권1호
    • /
    • pp.15-22
    • /
    • 2005
  • Natural gas possesses several characteristics that make it desirable as an engine fuel; 1)lower production cost, 2)abundant commodity and 3)cleaner energy source than gasoline. Due to the physics characteristics of natural gas, the volumetric efficiency and flame speed of a natural gas engine are lower than those of a gasoline engine, which results in a power loss of $10-20{\%}$ when compared to a normal gasoline engine. This paper describes the results of a research to improve the performance of a natural gas engine through the modification and controls of compression ratio, air/fuel ratio, spark advance and supercharging and method of measuring flame propagation velocity. It emphasizes how to improve the power characteristics of a natural gas engine. Combustion characteristics are also studied using an ion probe. The ion probe is applied to measure flame speed of gasoline and methane fuels to confirm the performance improvement of natural gas engine combustion characteristics.

초소형 연소기내 화염전파의 수치모사 (Numerical Simulation of Flame Propagation in a Micro Combustor)

  • 최권형;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.685-692
    • /
    • 2003
  • A numerical simulation of flame propagation in a micro combustor was carried out. Combustor has a sub -millimeter depth cylindrical internal volume and axisymmetric one-dimensional was used to simplify the geometry. Semi-empirical heat transfer model was used to account for the heat loss to the walls during the flame propagation. A detailed chemical kinetics model of $H_2/Air$ with 10 species and 16 reaction steps was used to calculate the combustion. An operator-splitting PISO scheme that is non-iterative, time-dependent, and implicit was used to solve the system of transport equations. The computation was validated for adiabatic flame propagation and showed good agreement with existing results of adiabatic flame propagation. A full simulation including the heat loss model was carried out and results were compared with measurements made at corresponding test conditions. The heat loss that adds its significance at smaller value of combust or height obviously affected the flame propagation speed as final temperature of the burnt gas inside the combustor. Also, the distribution of gas properties such as temperature and species concentration showed wide variation inside the combustor, which affected the evaluation of total work available of the gases.

전기장이 튜브내 예혼합화염 전파속도에 미치는 영향에 관한 연구 (Effect of Electric Fields on Flame Speed of Propagating Premixed Flames in Tube)

  • 류승관;원상희;차민석;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.137-143
    • /
    • 2006
  • The effect of electric fields on flame speed has been investigated experimentally by observing propagating premixed flames in a tube for methane/air mixtures. The flame speeds were measured in both the normal and micro gravity conditions to substantiate the measurements. The results show that the flame speeds were enhanced by both the AC and DC electric fields, as the flame approached to the high voltage electrode located on the one end of the tube. The enhancement of flame speed was proportional to the square root of the electric field intensity, defined as the voltage applied divided by the distance of flame from the high voltage electrode, when the electric field intensity is sufficiently large. When the electric field intensity was low, there existed critical intensities, below which the electric fields did not influence the flame speed. This critical electric field intensity correlated well with the flame speed.

  • PDF

정적연소기를 이용한 메탄-공기 예혼합기의 자발화 연소특성에 관한 연구 (A Study on the Auto-ignition Combustion Characteristics of CH4-Air Pre-mixtures in Constant Volume Combustion Chamber)

  • 이진수;이해철;차경옥;정동수
    • 한국분무공학회지
    • /
    • 제10권2호
    • /
    • pp.41-47
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And. it is extremely difficult to increase gasoline engine efficiency and to reduce NOx and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper. internal EGR(exhaust gas recirculation) effect is suggested to realize CAI combustion. An experimental study was carried out to achieve CAI combustion using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). A flame trap was used to simulate internal EGR effect and to increase flame propagation speed in the CVCC. Flame propagation photos and pressure signals were acquired to verify internal EGR effect. Flame trap creates high speed burned gas jet. It achieves higher flame propagation speed due to the effect of geometry and burned gas jet.

  • PDF

Large Eddy Simulation of Turbulent Premixed Flame in Turbulent Channel Flow

  • Ko Sang-Cheol;Park Nam-Seob
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1240-1247
    • /
    • 2006
  • Large eddy simulation of turbulent premixed flame in turbulent channel flow is studied by using G-equation. A flamelet model for the premixed flame is combined with a dynamic subgrid combustion model for the filtered propagation flame speed. The objective of this work is to investigate the validity of the dynamic subgrid G-equation model to a complex turbulent premixed flame. The effect of model parameters of the dynamic sub grid G-equation on the turbulent flame speed is investigated. In order to consider quenching of laminar flames on the wall, wall-quenching damping function is employed in this calculation. In the present study, a constant density turbulent channel flow is used. The calculation results are evaluated by comparing with the DNS results of Bruneaux et al.

SCV를 장착학 가솔린 가시화엔진에서의 연소특성 (Combustion Characteristics Using a S.I. Optically Acessible Engine with SCV)

  • 정구섭;김형준;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.115-123
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve gasoline optically accessible engine with swirl control valve(SCV). It adapted three different types of SCA(open ration 72.5%, 78%, 89%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt)were calculated to explain burn rate and flame speed. From acquired flame images, inspected the flame propagation direction, flame area, and flame centroid, Flame propagation direction was shown different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame image at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

  • PDF

농도구배가 삼지화염의 부상특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Lift-off Characteristics of the Triple Flame with Concentration Gradient)

  • 서정일;김남일;오광철;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.7-14
    • /
    • 2004
  • The lift-off characteristics of the triple flame have been studied experimentally with various mean velocities and concentration gradients using a multi-slot burner, which can control the concentration gradient and the mean velocity independently, Lift-off height, axial maximum velocity, flame temperature, and some other characteristics were examined for methane and propane flame, It was found that minimum values of the lift-off heights exist at a certain concentration gradient for constant mean velocity, and this result implies that the propagation velocity has a maximum value at this condition, OH radical distribution was measured with LIF method and velocity variation along streamline was measured with PlV system. In addition maximum temperature along streamline was measured with CARS system. The intensity of the diffusion flame affects on the propagation velocity of triple flame in the region of very weak concentration gradient.

  • PDF

Numerical Implementation of Flame Propagation and Flameholding

  • Rhee, Chang-Woo
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.124-129
    • /
    • 2001
  • The level surface approach for following flame front propagating in a premixed medium is adapted to incorporate the flameholding scheme. This allows one to follow the flameholding scheme. This allows one to follow the motion of an N-1 dimensional surface in N space dimensions. The flame speed may be an arbitrary function of flame geometry and the front is passively advected by an underlying flow field. This algorithm provides and accurate calculation of the flame curvature which may be needed for the flame propagation computation and thereby the estimation of curvature-dependent flame speeds. A numerical demonstration of this method-ology is applied to simulate the excursion of an anchored V-flame and locate the final equilibrium position.

  • PDF

인화성 혼합유의 구획 화재에 의한 화염의 전파 속도 및 특성 해석 (Propagation Speed and Characteristic Analysis of Flame in Compartment Fires of Flammable Liquids)

  • 조희수;이재오;최충석
    • 한국화재소방학회논문지
    • /
    • 제29권3호
    • /
    • pp.31-36
    • /
    • 2015
  • 본 연구는 동일 비율로 휘발유와 혼합된 인화성 액체 200 ml를 축소 모의된 구획 공간에 채우고 착화시켰을 때의 특성을 해석하였다. 구획된 공간의 한 변은 2,000 mm이며, 연소가 진행된 장치의 길이는 1,000 mm이다. 휘발유와 알코올을 혼합한 물질의 화염 전파 속도가 0.7 s로 가장 빠르고, 가장 늦은 물질은 휘발유와 경유를 혼합한 물질로 1.2 s이다. 화염이 최성기에 가장 빨리 도달한 물질은 휘발유와 아세톤을 혼합한 것으로 25.5 s가 소요되었다. 또한 휘발유와 경유를 혼합한 물질은 163.7 s로 가장 늦었다. 연소의 지속 시간은 휘발유와 경유를 혼합한 물질이 332.7 s로 가장 길었으며, 가장 짧은 것은 휘발유와 시너를 혼합한 물질로 121.5 s이다. 따라서 화재 현장을 조사하는 화재조사관은 최초 목격자의 진술은 물론 화염의 특성을 종합적으로 분석할 필요가 있다.

정적 연소실내 난류 예혼합화염 전파의 시뮬레이션 (Simulation of Turbulent Premixed Flame Propagation in a Closed Vessel)

  • 권세진
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1510-1517
    • /
    • 1995
  • A theoretical method is described to simulate the propagation of turbulent premixed flames in a closed vessel. The objective is to develop and test an efficient technique to predict the propagation speed of flame as well as the geometric structure of the flame surfaces. Flame is advected by the statistically generated turbulent flow field and propagates as a wave by solving twodimensional Hamilton-Jacobi equation. In the simulation of the unburned gas flow field, following turbulence properties were satisfied: mean velocity field, turbulence intensities, spatial and temporal correlations of velocity fluctuations. It is assumed that these properties are not affected by the expansion of the burned gas region. Predictions were compared with existing experimental data for flames propagating in a closed vessel charged with hydrogen/air mixture with various turbulence intensities and Reynolds numbers. Comparisons were made in flame radius growth rate, rms flame radius fluctuations, and average perimeter and fractal dimensions of the flame boundaries. Two dimensional time dependent simulation resulted in correct trends of the measured flame data. The reasonable behavior and high efficiency proves the usefulness of this method in difficult problems of flame propagation such as in internal combustion engines.