• Title/Summary/Keyword: Flame Characteristics

Search Result 1,525, Processing Time 0.021 seconds

A Study on Response Characteristics of Jet-diffusion Flame and Premixed Flame with Various Velocity Perturbations (제트확산화염과 예혼합화염의 다양한 속도 섭동에 대한 응답 특성)

  • Ahn, Myunggeun;Kim, Taesung;Kim, Heuydong;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2017
  • An experimental study investigates the flame response characteristics of jet-diffusion flame and premixed flame. The experiment was conducted while varying the amplitude. Flame lengths were quantified for OH chemiluminescence measurement and compared with the result of the flame transfer function. Flame length and flame velocity perturbation were normalized and compared with the result of the flame transfer function. The comparison results appear that velocity perturbation and flame length oscillation of premixed flame show linear behaviors on the other hand jet-diffusion flame, amplitudes are more thant 0.20, shows nonlinear behaviors of flame velocity perturbation and flame length oscillation.

Flame Propagation Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine by Flame Visualization (대형 액상 LPG 분사식 SI 엔진에서 화염 가시화를 이용한 희박영역에서의 화염 전파특성 연구)

  • 김승규;배충식;이승목;김창업;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.23-32
    • /
    • 2002
  • Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean bum operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean bum performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using an W intensified high-speed CCD camera. Concepts of flame area speed, In addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics. The results show the correlation between the flame propagation characteristics, which is related to engine performance of lean region, and engine design parameters such as swirl ratio, piston geometry and injection timing. Stronger swirl resulted in foster flame propagation under open valve injection. The flame speed was significantly affected by injection timing under open valve injection conditions; supposedly due to the charge stratification. Piston geometry affected flame propagation through squish effects.

The influence of Mixture Flow and the Ignition Conditions on the Initial Flame Propagation Characteristics (혼합기의 유동 및 점화조건에 따른 초기화염의 전파특성)

  • Kim, Jin-Young;Lee, Joong-Soon;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.57-64
    • /
    • 1999
  • Initial flame development and propagation were visualized under the new ignition system developed to estimate the effects of ignition characteristics on the engine performance in a port injection SI engine. Effects of intake air flow characteristics were also investigated by three different kinds of the swirl control valve. Experiments were performed in an optical single cylinder engine modified form a commercial engine. Flame images were captured through the quartz window mounted in the piston by the high speed video camera and analyzed to compare initial flame development. Results show that IMEP tends to rise slightly as the ignition duration gets longer. The direction of flame propagation is decisively governed by the in-cylinder flow motion. Every flame grows toward the exhaust valve forming a kind of turbulent flame. Initial flame propaagation characteristics are very similar to ones analyzed form pressure data.

  • PDF

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

An experimental study on flame characteristics with periodical fuel supply (주기적 연료공급에 따른 화염거동에 관한 실험적 연구)

  • 이태원;이동혁;정석호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.50-60
    • /
    • 1992
  • Flame characteristics of periodic fuel jets were studied experimentally by supplying the fuel periodically using solenoid valve. Flame was observed using a high speed camera, a 35 mm camera and a cathetometer. Hot-wire ananometer was used to meature the speed of fuel flow at the nozzle exit to analyze the flow characteristics. Various types of flame characteristics such as the flame lift-off and extinction were observed for different ranges of period, duty, and flow rate, but the flame shape was not affected much by the variation in the flow rate. Decreasing duty of the pulses applied to the solenoid valve promotes lift-off and enhances premixed flame characteristics.

  • PDF

An Experimental Study on the Lift-off Characteristics of the Triple Flame within a Diverging Duct (단면 확대 덕트 내에 형성된 삼지화염의 부상특성에 관한 실험적 연구)

  • Seo, Jeong-Il;Kim, Nam-Il;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.85-91
    • /
    • 2003
  • The lift-off characteristics of the triple flame within a diverging duct have been studied experimentally using a multi-slot burner, which can control the concentration gradient and the mean velocity independently. In this experiment the triple flame was stabilized successfully in lift-off condition and flame stabilization with a duct or without a duct, lift-off heights, and some other characteristics were examined for propane flame. It was examined that the effects with various concentration gradient and mean velocity on the triple flame. It was found that minimum value of the lift-off heights exist at a certain concentration gradient for constant mean velocity and flame with a duct is more stable than that without. Moreover the propagation velocity of the flame becomes maximum at a certain concentration gradient regardless of mean velocity.

  • PDF

Statistical Characteristics of Fractal Dimension in Turbulent Prefixed Flame (난류 예혼합 화염에서의 프랙탈 차원의 통계적 특성)

  • Lee, Dae-Hun;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.18-26
    • /
    • 2002
  • With the introduction of Fractal notation, various fields of engineering adopted fractal notation to express characteristics of geometry involved and one of the most frequently applied areas was turbulence. With research on turbulence regarding the surface as fractal geometry, attempts to analyze turbulent premised flame as fractal geometry also attracted attention as a tool for modeling, for the flame surface can be viewed as fractal geometry. Experiments focused on disclosure of flame characteristics by measuring fractal parameters were done by researchers. But robust principle or theory can't be extracted. Only reported modeling efforts using fractal dimension is flame speed model by Gouldin. This model gives good predictions of flame speed in unstrained case but not in highly strained flame condition. In this research, approaches regarding fractal dimension of flame as one representative value is pointed out as a reason for the absence of robust model. And as an extort to establish robust modeling, Presents methods treating fractal dimension as statistical variable. From this approach flame characteristics reported by experiments such as Da effect on flame structure can be seen quantitatively and shows possibility of flame modeling using fractal parameters with statistical method. From this result more quantitative model can be derived.

Soot Formation Characteristics on the Instability of Laminar Diffusion Flames (층류확산화염의 불안정성에 대한 매연생성 특성의 역할)

  • Nam, Youn-Woo;Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.74-81
    • /
    • 2010
  • In this study, soot formation characteristics on the instability of laminar diffusion flames were investigated experimentally using a concentric co-flow burner. When a small amount of air was supplied through an inner nozzle, a stable propane laminar diffusion flame became unstable and began to oscillate mainly due to the dilution effect. The increase of air flow rate transformed an oscillating non-sooting flame into a stable nonsooting flame. When the air flow rate was continuously increased an inner flame was formed and the flame was changed to an oscillating sooting flame, an oscillating non-sooting flame and finally a stable non-sooting hollow flame. When the air flow rate was decreased, a non-sooting hollow flame was eventually changed back to a stable non-sooting flame. The presence of an inner flame, however, altered the soot formation characteristics of a flame. More soot production was observed with the presence of an inner flame. The increased or decreased soot formation/oxidation rates, the radiation heat loss, and the heating effect of inner flames are most likely to be responsible for the observed instability of laminar diffusion flames.

An Experimental Study on the Lift-off Characteristics of the Triple Flame with Concentration Gradient (농도구배가 삼지화염의 부상특성에 미치는 영향에 관한 실험적 연구)

  • Seo, Jeong-Il;Kim, Nam-Il;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.7-14
    • /
    • 2004
  • The lift-off characteristics of the triple flame have been studied experimentally with various mean velocities and concentration gradients using a multi-slot burner, which can control the concentration gradient and the mean velocity independently, Lift-off height, axial maximum velocity, flame temperature, and some other characteristics were examined for methane and propane flame, It was found that minimum values of the lift-off heights exist at a certain concentration gradient for constant mean velocity, and this result implies that the propagation velocity has a maximum value at this condition, OH radical distribution was measured with LIF method and velocity variation along streamline was measured with PlV system. In addition maximum temperature along streamline was measured with CARS system. The intensity of the diffusion flame affects on the propagation velocity of triple flame in the region of very weak concentration gradient.

  • PDF

Study on the Combustion Characteristics of Tulip Tree (Liriodendron tulipifera) for Use as Interior Building Materials

  • Min Ji KIM;Sang-Joon LEE;Sejong KIM;Myung Sun YANG;Dong Won SON;Chul-Ki KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.410-418
    • /
    • 2023
  • In this study, the combustion characteristics of the Tulip tree, which is the representative broad-leaved afforestation tree in Korea, were analyzed. The flame retardant performance of the Tulip tree was analyzed by analyzing combustion characteristics on a total of three test samples; flame retardant treated, both flame retardant and oil stain-treated, and untreated. Then the flame retardance grade was classified for each of them. According to the result, test samples showed the strongest flame retardance were in order of flame retardant treated (C), both flame retardant and oil stain-treated (B), and untreated (A). As a result of analyzing the total heat emission and maximum heat emission rates, which is the evaluation standard for interior materials of Korean domestic buildings, test samples with flame retardant treat or flame retardant and oil stain treat were qualified for the flame-retardant standard. Both flame retardant and oil stain-treated samples showed higher total heat release (THR) and heat release rate compared to flame retardant-treated samples as the oil causes combustion with oxygen. On the other hand, they didn't qualify the THR in Quasi-non-combustible standards. To determine the correlation between the physical and combustion characteristics of wood, the combustion characteristics of other diffuse porous wood species, with which the Tulip tree is affiliated were analyzed, and noticed that the characteristic correlates with the density and quantity of wood. The results of this study are expected to be used as basic information on the combustion characteristics of the Tulip tree.