• Title/Summary/Keyword: Fixed sensor errors

Search Result 36, Processing Time 0.021 seconds

Estimation Technique of Fixed Sensor Errors for SDINS Calibration

  • Lee, Tae-Gyoo;Sung, Chang-Ky
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.536-541
    • /
    • 2004
  • It is important to estimate and calibrate sensor errors in maintaining the performance level of SDINS. In this study, an estimation technique of fixed sensor errors for SDINS calibration is discussed. First, the fixed errors of gyros and accelerometers, excluding gyro biases are estimated by the navigation information of SDINS in multi-position. The SDINS with RLG includes flexure errors. In this study, the gyros flexures are out of consideration, but the proposed procedure selects certain positions and rotations in order to minimize the influence of flexures. Secondly, the influences of random walks, flexures and orientation errors are verified via numerical simulations. Thirdly, applying the previous estimated errors to SDINS, the estimation of gyro biases is conducted via the additional control signals of close-loop self-alignment. Lastly, the experiments illustrate that the extracted calibration parameters are available for the improvement of SDINS.

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Reference State Tracking in Distributed Leader-Following Wireless Sensor Networks with Limited Errors

  • Mou, Jinping;Wang, Jie
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.602-608
    • /
    • 2015
  • In this paper, the limited error tracking problem is investigated for distributed leader-following wireless sensor networks (LFWSNs), where all sensors share data by the local communications, follower sensors are influenced by leader sensors directly or indirectly, but not vice versa, all sensor nodes track a reference state that is determined by the states of all leader sensors, and tracking errors are limited. In a LFWSN, the communicating graph is mainly expressed by some complete subgraphs; if we fix subgraphs that are composed of all leaders while all nodes in complete subgraphs of followers run on the sleeping-awaking method, then the fixed leaders and varying followers topology is obtained, and the switching topology is expressed by a Markov chain. It is supposed that the measurements of all sensors are corrupted by additive noises. Accordingly, the limited error tracking protocol is proposed. Based on the theory of asymptotic boundedness in mean square, it is shown that LFWSN keeps the limited error tracking under the designed protocol.

Identification of guideway errors in the end milling machine using geometric adaptive control algorithm (기하학적 적응제어에 의한 엔드밀링머시인의 안내면 오차 규명)

  • 정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.163-172
    • /
    • 1988
  • An off-line Geometric Adaptive Control Scheme is applied to the milling machine to identify its guideway errors. In the milling process, the workpiece fixed on the bed travels along the guideway while the tool and spindle system is fixed onto the machine. The scheme is based on the exponential smoothing of post-process measurements of relative machining errors due to the tool, workpiece and bed deflections. The guideway error identification system consists of a gap sensor, a, not necessarily accurate, straightedge, and the numerical control unit. Without a priori knowledge of the variations of the cutting parameters, the time-varying parameters are also estimated by an exponentially weighted recursive least squares method. Experimental results show that the guideway error is well identified within the range of RMS values of geometric error changes between machining passes disregarding the machining conditions.

AN ADAPTED METHOD FOR REDUCING CHANGE DETECTION ERRORS DUE TO POINTING DIRECTION SHIFTS OF A SATELLITE SENSOR

  • Jeong, Jong-Hyeok;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.126-129
    • /
    • 2005
  • Change detections is carried out under the assumption that pixel boundaries of geometrically corrected time series satellite images cover the same location. However that assumption can be wrong when shifts in the pointing direction of a satellite sensor occurs. Currently, although the influence of misregistration on landcover change detection has been investigated, there has been little research on the influence of pointing direction shifts of a satellite sensor. In this study, a simple method for reducing the effects of pointing direction shifts of a satellite sensor is proposed: the classification of two ASTER images was carried out using the linear spectral mixture analysis, the two classification results were resampled into a geometrically fixed grid, and then the change detection of the two ASTER images was carried out by comparing the resampled classification results of the two images. The proposed method showed high performance in discriminating between changed areas and unchanged areas by removing the pointing direction shifts of a satellite sensor.

  • PDF

Two-Phase Localization Algorithm in Wireless Sensor Networks (무선 센서 네트워크에서의 2단계 위치 추정 알고리즘)

  • Song Ha-Ju;Kim Sook-Yeon;Kwon Oh-Heum
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.172-188
    • /
    • 2006
  • Sensor localization is one of the fundamental problems in wireless sensor networks. Previous localization algorithms can be classified into two categories, the GGB (Global Geometry-Based) approaches and the LGB (Local Geometry-Based). In the GGB approaches, there are a fixed set of reference nodes of which the coordinates are pre-determined. Other nodes determine their positions based on the distances from the fixed reference nodes. In the LGB approaches, meanwhile, the reference node set is not fixed, but grows up dynamically. Most GGB algorithms assume that the nodes are deployed in a convex shape area. They fail if either nodes are in a concave shape area or there are obstacles that block the communications between nodes. Meanwhile, the LGB approach is vulnerable to the errors in the distance estimations. In this paper, we propose new localization algorithms to cope with those two limits. The key technique employed in our algorithms is to determine, in a fully distributed fashion, if a node is in the line-of-sight from another. Based on the technique, we present two localization algorithms, one for anchor-based, another for anchor-free localization, and compare them with the previous algorithms.

  • PDF

Standardized Description Method of Optical Characteristics Tests for Image Sensor Modules (이미지 센서 모듈의 광학적 특성 테스트를 위한 표준화된 기술 방법)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.603-611
    • /
    • 2014
  • When image sensor and lens are fixed on the module, mechanical errors often induce tilt, rotation, or narrow field-of-view of the acquired image. Therefore, the optical characteristics of image sensor modules should be tested by test equipments. This paper explains how to test the optical characteristics of images sensors. It also proposes the standardized description methods of optical characteristics tests which are similar with those of image acquisition characteristics tests. The proposed method helps the test equipments to perform image acquisition characteristics tests and optical characteristics tests together.

Position Calibration System of Automatic Transfer Crane (자동 트랜스퍼 크레인의 위치보정 시스템)

  • 박경택;박찬훈;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.515-520
    • /
    • 2002
  • Automatic Transfer Crane is needed for automation of container terminal. It requires the control capability of exact position for loading/unloading job in yard. But it has the limitation of improvement because it has the operational environmental and its structural problems. It has the positioning errors caused by the deformation of rail, yawing motion of crane, wear of wheel, sliding motion between wheel and rail and so on. This study shows the calibration method of crane position by using the primitivity sensor and calibrating plate fixed on the ground.

  • PDF

An Error Recovery Mechanism for Wireless Sensor Networks

  • Kim, Dong-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.237-241
    • /
    • 2012
  • In wireless sensor networks, the importance of transporting data correctly with reliability is increasing gradually along with the need to support communications between the nodes and sink. Data flow from the sink to the nodes requires reliability for control or management that is very sensitive and intolerant of error; however, data flow from the nodes to the sink is relatively tolerant. In this paper, with emphasis on the data flow from the sink to the nodes, we propose a mechanism that considers accurate transport with reliability hop-by-hop. During the process of sending the data, if errors occur or data is missing, the proposed mechanism supports error recovery using a fixed window with selective acknowledgment. In addition, this mechanism supports congestion control depending on the buffer condition. Through the simulation, we show that this mechanism is accurate, reliable, and proper for transport in wireless sensor networks.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.