• Title/Summary/Keyword: Fixed point index

Search Result 62, Processing Time 0.022 seconds

FIXED POINTS OF WEAKLY INWARD 1-SET-CONTRACTION MAPPINGS

  • Duan, Huagui;Xu, Shaoyuan;Li, Guozhen
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1725-1740
    • /
    • 2008
  • In this paper, we introduce a fixed point index of weakly inward 1-set-contraction mappings. With the aid of the new index, we obtain some new fixed point theorems, nonzero fixed point theorems and multiple positive fixed points for this class of mappings. As an application of nonzero fixed point theorems, we discuss an eigenvalue problem.

THE FIXED POINT INDEX FOR ACCRETIVE MAPPINGS WITH K-SET CONTRACTION PERTURBATIONS IN CONES

  • Chen, Y.Q.;Ha, K.S.;Cho, Y.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.237-245
    • /
    • 1997
  • The fixed point index plays an important role in solving the positive solutions of nonlinear equations in ordered Banach spaces ([7], [10], [11], [14], [15]). Many authors have studied the existence problems of positive solutions of nonlinear equations for nonlinear mappings ([1]-[5], [7], [9], [10], [14], [15]).

  • PDF

THE LEAST NUMBER OF COINCIDENCES WITH A COVERING MAP OF A POLYHEDRON

  • Jezierski, Jerzy
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.911-921
    • /
    • 1999
  • We define the coincidence index of pairs of maps p, f : $\widetilde{X}$ $\rightarrow$ X where p is a covering of a polyhedron X. We use a polyhedral transversality Theorem due to T. Plavchak. When p=identity we get the classical fixed point index of self map of polyhedra without using homology.

  • PDF

CIRCLE ACTIONS ON ORIENTED MANIFOLDS WITH FEW FIXED POINTS

  • Jang, Donghoon
    • East Asian mathematical journal
    • /
    • v.36 no.5
    • /
    • pp.593-604
    • /
    • 2020
  • Let the circle act on a compact oriented manifold with a discrete fixed point set. At each fixed point, there are positive integers called weights, which describe the local action of S1 near the fixed point. In this paper, we provide the author's original proof that only uses the Atiyah-Singer index formula for the classification of the weights at the fixed points if the dimension of the manifold is 4 and there are at most 4 fixed points, which made the author possible to give a classification for any finite number of fixed points.

FIXED POINT THEORY FOR PERMISSIBLE MAPS VIA INDEX THEORY

  • Balaj, Mircea;Cho, Yeol-Je;O'Regan, Donal
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.97-103
    • /
    • 2008
  • New fixed point theorems for permissible maps between $Fr{\acute{e}}chet$ spaces are presented. The proof relies on index theory developed by Dzedzej and on viewing a $Fr{\acute{e}}chet$ space as the projective limit of a sequence of Banach spaces.

  • PDF

JONES' INDEX FOR FIXED POINT ALGEBRAS

  • Lee, Jung-Rye
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.29-36
    • /
    • 1998
  • We show that if M is a $II_1$-factor and a countable discrete group G acts outerly on M then Jones' index $[M:M^G]$ of a pair of $II_1^-factors is equal to the order $\mid$G$\mid$ of G. It is also shown that for a subgroup H of G Jones' index $[M^H:M^G]$ is equal to the group index [G:H] under certain conditions.

  • PDF

EXISTENCE OF n POSITIVE SOLUTIONS TO SECOND-ORDER MULTI-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

  • Wang, Feng;Zhang, Fang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.815-827
    • /
    • 2012
  • The existence of $n$ positive solutions is established for second order multi-point boundary value problem at resonance where $n$ is an arbitrary natural number. The proof is based on a theory of fixed point index for A-proper semilinear operators defined on cones due to Cremins.