• Title/Summary/Keyword: Fixed length

Search Result 1,086, Processing Time 0.021 seconds

A Study on the Drafting Method of Korean Men's Traditional Trousers (한복바지 구성의 제도법에 대한 고찰)

  • 정욱임
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.4
    • /
    • pp.95-110
    • /
    • 1997
  • According to the design method for constructing the crotch angle of traditional Korean men's trousers there are differences in from after its completion. Since there is no standardization of visual & aesthetic pattern for the construction method which is stablished by the calculation formular of waist girth hip girth pantleg end and upper outer leg length it is difficult to be used for educational use or for teaching materials. Therefore the purpose of this project according to five models in proportion to the physical standard of Korea in ages from 24 to 29 years old is to establish a design criterion and the standardization of construction methods by introduction the pant construction method of the crotch angle by converting the sitting posture length to seaming crotch center point both knees width in the Korean way of sitting. The production method for the pattern design is as follow: (1) The waist girth formular is {{{{ { w} over {4 } }}}}+{{{{ {w} over {10 } }}}}(2) The hip girth formular is {{{{ {H } over { 4} }}}}+{{{{ {H } over {5 } }}}}(3) The pantleg end formular is {{{{ {H } over {4 } }}}}(4) A crotch angle is fixed at 70 degress.(5) The ratio of outer leg length to leg width is 5:8 (6) The component ratio of the upper outer leg length to the pant length in 5:8(7) The ratio of the division point of front / right inner leg length and left inner leg width to upper outer leg length is 5 : 8

  • PDF

A Noble Equalizer Structure with the Variable Length of Training Sequence for Increasing the Throughput in DS-UWB

  • Chung, Se-Myoung;Kim, Eun-Jung;Jin, Ren;Lim, Myoung-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.113-119
    • /
    • 2009
  • The training sequence with the appropriate length for equalization and initial synchronization is necessary before sending the pure data in the burst transmission type DS-UWB system. The length of the training sequence is one of the factors which make throughput decreased. The noble structure with the variable length of the training sequence whose length can be adaptively tailored according to the channel conditions (CM1,CM2,CM3,CM4) in the DS-USB systems is proposed. This structure can increase the throughput without sacrificing the performance than the method with fixed length of training sequence considering the worst case channel conditions. Simulation results under IEEE 802.15.3a channel model show that the proposed scheme can achieve higher throughput than a conventional one with the slight loss of BER performance. And this structure can reduce the computation complexity and power consumption with selecting the short length of the training sequence.

Does matching relation exist between the length and the tilting angle of terminal implants in the all-on-four protocol? stress distributions by 3D finite element analysis

  • Li, Xiaomei;Cao, Zhizhong;Qiu, Xiaoqian;Tang, Zhen;Gong, Lulu;Wang, Dalin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.240-248
    • /
    • 2015
  • PURPOSE. To explore whether there is matching relation between the length and the tilting angle of terminal implants in the All-on-Four protocol by studying the effects of different implant configurations on stress distributions of implant, bone, and framework. MATERIALS AND METHODS. Four implants were employed to support a full-arch fixed prosthesis and five three-dimensional finite element models were established with CT images, based on the length (S and L) and distal tilt angle ($0^{\circ}$, $30^{\circ}$ and $45^{\circ}$) of terminal implants for an edentulous mandible, which named: Tilt0-S, Tilt30-S, Tilt30-L, Tilt45-S and Tilt45-L. An oblique 240 N was loaded at second molar. The von Mises Stresses were analyzed. The implants were consecutively named #1 to #4 from the loading point. RESULTS. 1) Tilt0-S had the greatest stress on the implants, with the other groups exhibiting variable reductions; the four implants of Tilt45-L demonstrated the greatest reduction in stress. 2) Tilt0-S had the greatest stress at bone around #1 implant neck, and Tilt45-L exhibited the least stress, which was a 36.3% reduction compared to Tilt0-S. 3) The greatest stress in the framework was found on the cantilevers distal to #1 implant. Tilt45-S exhibited the least stress. CONCLUSION. Matching different length and tilting angle of the terminal implants led to variable stress reductions on implants, bone and the superstructure. By optimizing implant configuration, the reduction of stress on implants and surrounding bone could be maximized. Under the present condition, Tilt45-L was the preferred configuration. Further clinical testings are required.

A Study on Adaptable Non-contact Shape Inspection System (적응형 비접촉 형상 검사에 관한 연구)

  • Kang, Young-June;Park, Nak-Gyu;Lee, Dong-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.74-80
    • /
    • 2005
  • A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3D data of an object was calculated from the 2 dimensional image information obtained by the laser stripe using the laser triangulation. The system that use existing theory can measure the diameter of hole not only in a normal plane but also ill an incline plane. However, in the existing theory, since the lens with fixed feral length was used, the area of measurement was fixed. The simplest way to solve this problem is to change distance between a CCD camera and object. Other way is to use a zoom lens having variable focal length. In this paper, the zoom lens with variable focal length was used. Therefore, we ran experiment with magnification that is optimized according to size of object using zoom lens with variable focal length.

Preliminery study of waveform control in ERW process (전기저항용접의 파형제어에 관한 기초연구)

  • Cho, Min-Hyun;Kim, Dong-Chul;Kang, Mun-Jin;Eun, Seung-Soo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.32-32
    • /
    • 2009
  • Electric Resistance Welding (ERW) process is the most efficient process to manufacture the linepipe. To develop the high performance ERW linepipe using the high strength and the high alloy steels, the modulation of input power waveform such as sinusoidal waveform is introduced because the conventional ERW technology is not sufficient enough to produce the high quality linepipe due to its strength and high alloy contents (high Ceq). In this article, the material used for the experiment was API X60 with 8.2mm thickness, and ERW simulator at POSCO was used to develop a waveform control system for the power modulation. The frequency of power modulation was varied from 50Hz to 150Hz with the fixed amplitude of ${\pm}2%$ power. The non-modulated power input and the modulated power input cases are conducted to demonstrate the variation of the narrow gap length and the arcing frequency due to power modulation. From results of the non-modulated power input case, the excessive power causes the longer narrow gap length and the low arcing frequency due to the large heat input and the strong electro magnetic force that increase the weld defect. On the contrary, the small narrow gap length and the high arcing frequency reduce the weld defect. After modulating the power input with 50Hz and 100Hz at the fixed power, the arcing frequency increases, but the narrow gap length does not change much. The high arcing frequency prevents the formation of weld defect because the sweeping frequently cleans the oxides on the narrow gap edges. As a result, the manufacturing window can be expanded by the power modulation that provides the stable ERW process for the quality improvement of the linepipe made from the high strength/high alloy steels.

  • PDF

A New Interference-Aware Dynamic Safety Interval Protocol for Vehicular Networks

  • Yoo, Hongseok;Chang, Chu Seock;Kim, Dongkyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-13
    • /
    • 2014
  • In IEEE 802.11p/1609-based vehicular networks, vehicles are allowed to exchange safety and control messages only within time periods, called control channel (CCH) interval, which are scheduled periodically. Currently, the length of the CCH interval is set to the fixed value (i.e. 50ms). However, the fixed-length intervals cannot be effective for dynamically changing traffic load. Hence, some protocols have been recently proposed to support variable-length CCH intervals in order to improve channel utilization. In existing protocols, the CCH interval is subdivided into safety and non-safety intervals, and the length of each interval is dynamically adjusted to accommodate the estimated traffic load. However, they do not consider the presence of hidden nodes. Consequently, messages transmitted in each interval are likely to overlap with simultaneous transmissions (i.e. interference) from hidden nodes. Particularly, life-critical safety messages which are exchanged within the safety interval can be unreliably delivered due to such interference, which deteriorates QoS of safety applications such as cooperative collision warning. In this paper, we therefore propose a new interference-aware Dynamic Safety Interval (DSI) protocol. DSI calculates the number of vehicles sharing the channel with the consideration of hidden nodes. The safety interval is derived based on the measured number of vehicles. From simulation study using the ns-2, we verified that DSI outperforms the existing protocols in terms of various metrics such as broadcast delivery ration, collision probability and safety message delay.

The Relationship between Anthropometric Parameters of the Foot and Kinetic Variables during Running (달리기 시 발의 인체측정학적 변인과 운동역학적 변인의 관계)

  • Lee, Young Seong;Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.173-183
    • /
    • 2019
  • Objective: The aim of this study was to investigate the correlation coefficients between anthropometric parameters of the foot and kinetic variables during running. Method: This study was conducted on 21 healthy young adults (age: $24.8{\pm}2.1yes$, height: $177.2{\pm}5.8cm$, body mass: $73.3{\pm}7.3kg$, foot length: $256.5{\pm}12.3mm$) with normal foot type and heel strike running. To measure the anthropometric parameters, radiographs were taken on the frontal and sagittal planes, and determined the length and width of each segment and the navicular height. Barefoot running was performed at a preferred velocity ($3.0{\pm}0.2m/s$) and a fixed velocity (4.0 m/s) on treadmill (Bertec, USA) in order to measure the kinetic variables. The vertical impact peak force, the vertical active peak force, the braking peak force, the propulsion peak force, the vertical force at mid-stance (vertical ground reaction when the foot is fully landed in mid-stance or at the point where the weight was uniformly distributed on the foot) and the impact loading rate were calculated. Pearson's correlation coefficient was used to investigate the relationship between anthropometric variables and kinetical variables. The significance level was set to ${\alpha}=.05$. Results: At the preferred velocity running, the runner with longer forefoot had lower active force (r=-.448, p=.041) than the runner with short forefoot. At the fixed velocity, as the navicular height increases, the vertical force at full landing moment increases (r= .671, p= .001) and as the rearfoot length increases, the impact loading rate decreases (r=- .469, p= .032). Conclusion: There was a statistically significant difference in the length of fore-foot and rearfoot, and navicular height. Therefore it was conclude that anthropometric properties need to be considered in the foot study. It was expected that the relationship between anthropometric parameters and kinetical variables of foot during running can be used as scientific criteria and data in various fields including performance, injury and equipment development.

Pullout Characteristics of End Fixed Nails (양단정착형 쏘일네일링의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • In this study, several pullout tests were carried out under various field conditions to evaluate the pullout force of the end fixed nails. Pullout resistance force, displacement and friction force between the grouting and nail were measured in end fixed nails installed in soft rock, weathered rock and weathered soil. Furthermore, the field test were also carried out under the same condition using the conventional type nails. Based on the test results, it is concluded that the end fixed nails showed larger ultimate resistance force compared with conventional types nails, approximately two times in weathered soil and 1.6 times of weathered rock, respectively. The skin friction is also increased in end fixed type about 1.8~3.0 times. Finally, it is concluded in the base of the force transfer properties that using the end fixed nails could decrease the displacement and show a uniform resistance in entire length of nails.

  • PDF

Preliminary Study on Development of Length-Variable Rotor Blade for Unmanned Helicopter (무인 헬리콥터용 길이가변 로터 블레이드 개발을 위한 선행연구)

  • Chun, Ju-Hong;Byun, Young-Seop;Lee, Byoung-Eon;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2010
  • A preliminary study on a length-variable rotor blade for a small unmanned helicopter has been conducted. After surveys on previous researches, and examining requirements for application to a small unmanned helicopter, a length-variable rotor blade was designed and manufactured to be driven by centrifugal force from rotor revolution with no mechanical actuator. The rotor blade was divided into a fixed inboard section and an outboard section sliding in span-wise direction. In order to determine the operating conditions of the length-variable rotor during revolution, and to derive the design variables of extension spring and rotor weight, a series of analyses from multi-body dynamics solution were conducted. The manufactured prototype was verified of its length-varying mechanism from a rotor stand, the results and required future improvements are discussed.

Isolated-Word Speech Recognition using Variable-Frame Length Normalization (가변프레임 길이정규화를 이용한 단어음성인식)

  • Sin, Chan-Hu;Lee, Hui-Jeong;Park, Byeong-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.21-30
    • /
    • 1987
  • Length normalization by variable frame size is proposed as a novel approach to length normalization to solve the problem that the length variation of spoken word results in a lowing of recognition accuracy. This method has the advantage of curtailment of recognition time in the recognition stage because it can reduce the number of frames constructing a word compared with length normalization by a fixed frame size. In this paper, variable frame length normalization is applied to multisection vector quantization and the efficiency of this method is estimated in the view of recognition time and accuracy through practical recognition experiments.

  • PDF