• Title/Summary/Keyword: Fixed bed reactor

Search Result 245, Processing Time 0.029 seconds

Activity and Selectivity in Low Temperature for Dibenzothiophene Hydrodesulfurization based Zeolite Support (제올라이트 담체상의 디벤조티오펜 수첨탈황반응에서 저온활성 및 선택성)

  • Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1998
  • Two types of CoMo/zeolite as well as $NiMo/{\gamma}-Al_2O_3$ were prepared and their activities and selectivities of low-temperature dibenzothiophene(DBT) hydrodesulfurization(HDS) were studied in high pressure fixed bed reactor. The HDS activities of CoMo/zeolites were higher than that of $NiMo/{\gamma}-Al_2O_3$ at temperatures below $225^{\circ}C$ while they were lower than that of $NiMo/{\gamma}-Al_2O_3$ at temperatures higher than $275^{\circ}C$. The main products from $NiMo/{\gamma}-Al_2O_3$ were biphenyl and cyclohexylbenzene. The product distribution of CoMo/zeolite catalysts was different from that of $NiMo/{\gamma}-Al_2O_3$. It is speculated that DBT is converted to alkylcyclohexane over zeolite based catalysts through both alkylation and hydrogenation reactions. The crystal structure of molybdenum was $MoO_3$ in fresh zeolite support while mixtures of $MoO_3$ and $MoS_2$ were observed in the aged catalyst.

  • PDF

Kinetics of Catalytic Oxidation of Vinyl Chloride over CrOx/γ-alumina (CrOx/γ-alumina 촉매상에서 Vinyl Chloride의 산화반응 속도해석)

  • Lee, Hae-Wan;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.85-92
    • /
    • 1999
  • The complete catalytic oxidation of vinyl chloride was investigated over chromium oxide supported ${\gamma}$-alumina using a fixed bed micro-reactor at temperature between 240 and $300^{\circ}C$ and concentration between 600 and 3500 ppm. The oxidation of vinyl chloride was nonlinear in the concentration of vinyl chloride and zeroth order in the concentration of oxygen. The addition of HCl and $H_2O$ as products to the feed stream didn't influence the conversion of vinyl chloride. Several kinetic rate model were tested to describe the data over the range of condition investigated, and developed a model which provide the best correlation of experimental data. The resulting model of kinetic rate was derived by assuming that the reacting occurred via adsorption and subsequent decomposition of the vinyl chloride onto the oxygen covered chromium oxide surface, with the reaction being inhibited by the adsorption of vinyl chloride. The percent standard deviation between the predicted and experimental was about 5.2%, and the activation energy was 18.9 kcal/mol.

  • PDF

A Study over Catalytic Behavior Octane Enhancer, TAME Synthesis with Ion Exchange Resin Catalysts (이온교환수지 촉매를 이용한 옥탄가 향상제인 TAME 합성반응의 연구)

  • Park, Jin-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.832-842
    • /
    • 1996
  • TAME synthesis was studied in a fixed bed reactor with 3 different types of exchanged resins i.e, Amberlyst-15, Amberlyst-15(wet) and Amberlyst XN-1010. Amberlyst-15 has highest activity, presumably due to the higher reaction participation of the inner active sites of gel shape microparticular resin structure. The optimum reaction conditions for TAME synthesis were found as follows ; reaction temperature of $135^{\circ}C$, molar ratio(MeOH/I.A.A) of 1.0~4.0 and W/F of 2.0~4.0 gr.-cat. hr/gr.-mole. The cross-linking bond of styrene divinyl benzene was observed at $2{\theta}=20$ in XRD pattern. The DSC analysis showed that the thermal stability was in order of Amberlyst-15>Amberlyst-15(wet)>Amberlyst XN-1010. The apparent activation energies of TAME synthesis reaction with Amberlyst-15, Amberlyst-15(wet) and Amberlyst XN-1010 were 12.36, 12.46 and 14.72 kcal/mole, respectively.

  • PDF

Effects of Y-Zeolite as a Support on CO, $CC_3H_6$ Oxidation for Diesel Emission Control (디젤엔진 배출가스 저감을 위한 CO, $C_3H_6$의 산화반응에서 Y-제올라이트 담체의 영향)

  • 김문찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.91-98
    • /
    • 1997
  • Y-zeolite and ${\gamma}$-Al$_2$O$_3$ were used as supports on CO and $C_3$H$_{6}$ oxidation for diesel emission control. The catalysts composed of Pd and Pt as active components were wash coated on honeycomb type ceramic substrate. The oxidation of CO and $C_3$H$_{6}$ was carried out over prepared honeycomb in a fixed bed continuous reactor in the temperature range of 20$0^{\circ}C$~50$0^{\circ}C$ and 20,000 GHSV (h$^{-1}$ ). Surface area of Y-zeolite was larger than that of ${\gamma}$-Al$_2$O$_3$ due to channel structure of Y-zeolite. Therefore, high conversion of CO and $C_3$H$_{6}$ could be obtained because of good dispersion of active metals over Y-zeolite. The honeycomb used Y-zeolite as a support showed higher $C_3$H$_{6}$ conversion than that of ${\gamma}$-Al$_2$O$_3$ due to better cracking and isomerization activity of Y-zeolite. PdPt catalyst showed high conversion of CO and $C_3$H$_{6}$ at low temperature region, 20$0^{\circ}C$~30$0^{\circ}C$, for their synergy effects. PdPt/Y-Zeolite catalyst could achieve more than 80% conversion of $C_3$H$_{6}$ at 30$0^{\circ}C$. The use of Y-zeolite as a support increased CO and $C_3$H$_{6}$ conversion, and decreased SO$_2$ conversion very effectively. Y-zeolite found to have a good adaptability as a support for the diesel emission after treatment system.

  • PDF

Operation characteristics of partial oxidation reformer for transportation fuels (수송 연료용 부분산화 개질기의 운전특성)

  • Lee, Sangho;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for $150{\sim}200W_e$ class solid oxide fuel cell. The reformer was operated in the $O_2$/C range between 0.6 and 0.8 while the capacity was fixed at $150W_e$. The temperature range in catalyst bed was between $500^{\circ}C$ and $900^{\circ}C$. Only 83% fuel was converted to $H_2$, CO, $CO_2$ and $CH_4$ at the operating conditions. The lowest temperature increase to $700^{\circ}C$ when the reformer was operated at $200W_e$, Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

  • PDF

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

Physical Properties and Sulfidation Kinetics of Mn-Based Sorbent for Hydrogen Sulfide Removal (황화수소 제거를 위한 망간계 탈황제의 물리적 특성과 황화반응 속도)

  • Oh, Kwang-Joong;Shon, Byung-Hyun;Choi, Eun-Hwa;Yi, Gang Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2067-2076
    • /
    • 2000
  • The experiments have been made to develop manganese-based sorbent(MT, MFT) for the removal of hydrogen sulfide from simulated hot coal gases. Manganese-based sorbents were tested in an ambient-pressure fixed-bed reactor to calculate H2S removal efficiency. and a three hole jet attrition tester to characterize the sorbent physical properties. According to the experimental results of attrition test. the attrition resistance of 5% bentonite containing sorbent was higher than that of 2% bentonite. The attrition resistances of both sorbents increased with induration temperature. Effects of sulfidation temperature. space velocity. and $H_2S$ concentrations on the $H_2S$ removal efficiency were investigated. Experimental results showed that $H_2S$ could be removed from 5,100ppmv to 20ppmv at $450^{\circ}C$, and to 30~65ppmv at $550{\sim}650^{\circ}C$ for both MT/MFT sorbents. As for the change of space velocity, the breakthrough time was decreased with space velocity.

  • PDF

Activity Changes of Supported Nickel Catalysts with Respect to Ni Loading (니켈 담지촉매의 니켈 담지량에 따른 활성 변화)

  • Kim, Sang-Bum;Park, Eun-Seok;Cheon, Han-Jin;Kim, Young-Kook;Kim, Myung-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.230-236
    • /
    • 2003
  • Synthesis gas is commercially produced by a steam reforming process. However, the process is highly endothermic and energy-consuming. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to decrease the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.

Strength and conversion characteristics of DeNOx catalysts with the addition of dispersion agent (분산제 첨가에 따른 탈질촉매의 강도세기 및 전환특성)

  • Lee, Hyun Hee;Park, Kwang Hee;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6575-6580
    • /
    • 2013
  • Various modified SCR catalysts were prepared and tested to improve the strength of catalysts for use under severe conditions. The SCR catalysts were modified with a binder and dispersion agent, and tested at the fixed bed reactor. FT-IR and $H_2$-TPR were used to analyze the degree of hydrogen use and ammonia adsorption by the modified catalysts. In the case of the SCR catalysts coated with 2.3g of the binder, 4.7g of ethanol, and 0.1g of dispersion agent, the strength of catalyst was increased by approximately 12%. On the other hand, despite the enhancement of strength, the activities of the SCR catalysts were decreased by 2-10%. When the mixed solution composed of binder, dispersion agent and $SiO_2$ solution was precipitated on the catalyst, the $NO_x$ conversion of the catalyst was decreased slightly. The Bronsted acid site and Lewis acid site worked as the activators for the SCR reaction, and were decreased by $SiO_2$.

Selective Catalytic Reduction of Nitric Oxide over Metal Exchanged ZSM-5 Catalysts (금속을 이온교환시킨 ZSM-5 촉매 상에서 Nitric Oxide의 환원반응)

  • Ahn, Sung-Hwan;Kim, Tae-Ok;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • The selective catalytic reduction(SCR) of nitric oxide by ethane in the presence of oxygen was investigated on Cu-ZSM-5, Co-ZSM-5 and Ga-ZSM-5 catalysts over a range of 400, 450 and $500^{\circ}C$. The catalysts were prepared by ion-exchange method. The composition of the reactant gases were 1000 ppm of NO, 1000 ppm of $C_{2}H_{6}$ and 2.5% of $O_{2}$, and the reaction was conducted in a fixed-bed reactor at 1 atm. For the 20wt% Co-ZSM-5(50) catalyst, the NO conversion reached up to 100%, while the $C_2H_6$ conversion and the CO selectivity were about 50% and 25%, respectively, at $450^{\circ}C$. For the 20wt% Cu-ZSM-5(50) catalyst, the NO conversion and the C2H6 conversion were about 80% and 100%, respectively, but there was no CO produced. The metal ion-exchanged ZSM-5 catalysts exhibited a tendency to increase the NO conversion with the Si/Al ratio of the ZSM-5, that is, NO conversion was inversely proportional to the acidity of the catalysts. But, the effect of the acidity on NO conversion was not so large. From the XRD results of the catalysts before and after SCR reaction it was found that there was no structural change.