• Title/Summary/Keyword: Fixed Media

Search Result 341, Processing Time 0.027 seconds

SND in the Fixed Media Tank of Membrane-BNR Process Treating Low C/N Wastewater (저농도 하수 유입 Membrane-BNR공정내 고정상담체 호기조에서의 SND)

  • Jeong, Yong-Chul;Lee, Jung-Yeol;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.328-332
    • /
    • 2008
  • This research was about T-N removal efficiency of oxic reactor in which fixed media submerged from Membrane BNR(An+Ax+Ox) process. This experiment was implemented by using fixed media and changing DO concentration in the oxic reactor. Nitrification efficiencies of all modes were more than 98%. When no media was in the oxic reactor, T-N removal efficiency was only 47.4%, while it were shown from 60.3% to 67.4% with packed media, which indicated improved efficiency of 27~42%. The removal efficiencies of TCOD and BOD were more than 89%, 98% respectively, which could satisfy the guideline of advanced sewage reclamation by Department of Environment. When DO concentration in the packed oxic-media tank was 0.5~1.0 mg/L, T-N removal efficiency was low, which resulted from insufficient nitrification in the oxic reactor. Therefore, DO concentration of bulk solution needs to be kept more than 1.0 mg/L to induce higher nitrification efficiency in the reactor in which media was submerged. Also, the selection of DO concentration is important to prevent media from being clogged.

Effects of Organic Loading Rates on Treatment Performance in a Polyvinylidene Media Based Fixed-Film Bioreactor

  • Ahmed, Zubair;Oh, Sang-Eun;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.238-242
    • /
    • 2009
  • This study investigated the effects of organic loading rates on simultaneous carbon and nitrogen removal in an innovative fixed-film aerobic bioreactor. The fixed-film bioreactor (FFB) was composed of a two-compartment aeration tank, in which a synthetic filamentous carrier was submerged as biofilm support media, and a settling tank which polyvinylidene media (Saran) was used as settling aid for suspended solids. Three different organic loading rates, ranging from 0.92-2.02 kg chemical oxygen demand/$m^3$/day were applied by varying hydraulic retention time (HRT). The total soluble organic carbon removal efficiencies were in the range of 90-97%. The removal efficiency of ammonia was found to be in the range of 70-84%. Total nitrogen removal efficiency was found to be in the range of 40-45%, which indicates that denitrification reactions occurred simultaneously in the attached biofilm on the fibrous media in the aeration tank. The settling performance of suspended solids was significantly improved due to the presence of Saran media in the settling compartment, even for a short HRT. The fixed-film aerobic bioreactor used in this study demonstrated efficient treatment efficiency even at higher organic loading rates and at short HRTs.

Transaction effect analysis through Compressing WAN Realtime Transfer system (WAN 실시간 전송시스템의 압축을 통한 전송효과 분석)

  • 박인순;박인정
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1033-1036
    • /
    • 1999
  • In storage technology it is desirable to have greater storage capacity at lower costs. Data compression addresses these demands by reducing the amount of data that must be stored to a given size of media, thus lowering the cost of that storage device. In data compressions it is desirable to have faster transfer rates at lower costs. Data compression addresses these demands by reducing the amounts of data that must be transferred over a media with a fixed bandwidth, thus reducing the connection the. Data compression also reduces the media bandwidth required to transfer a fixed amount of data with a fixed quality of service, thus reducing the costs on this service.

  • PDF

Nitrification Efficiency in Fixed Film Biofilters using Different Filter Media in Simulated Seawater Aquarium System

  • Peng, Lei;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.16 no.4
    • /
    • pp.203-209
    • /
    • 2003
  • Nitrification efficiency of fixed film biofilters with sand, loess bead, and styrofoam bead in biofilter columns of 1-m height and 30 cm width was studied. Synthetic wastewater was continuously supplied to the culture tank to maintain total ammonia nitrogen (TAN) concentration in the inflow water at around 8 mg/L. The hydraulic loading rate was set at 200 ㎥/$m^2$/day. TAN conversion was stabilized after about 90 day conditioning for all the selected filter media but with net accumulations of nitrite. On the volumetric basis, conversion rates of TAN and nitrite were the highest in styrofoam bead filter. Mean volumetric TAN conversion rates in the final samples were 682, 269, and 79 g TAN/㎥/day in the styrofoam bead, sand and loess bead filters, respectively. Low gravity and cost of styrofoam bead render the handling easier and more cost-effective.

The Effect of Fixed Media and Recycling Ratio on Nutrients Removal in a Pilot-Scale Wastewater Treatment Unit (고정식 담체 유무와 반송비에 따른 소규모 하수처리 시스템 내 영양염류 제거 특성)

  • Hwang, Jae-Hoon;Cho, Dong-Wan;Kim, Chung-Hwan;Jeon, Byong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.449-455
    • /
    • 2013
  • The effect of recycling ratio and fixed media on nitrate and phosphate removal was investigated in a pilot-scale wastewater treatment unit using synthetic wastewater. Addition of fixed media increased nitrate removal from 45 to 58% while no noticeable change was observed for Chemical Oxygen Demand (COD) and phosphate removal (<5%). Nitrate removal efficiency also enhanced (Ca 7%) when the influent wastewater flow was doubled (2Q), however phosphate removal was decreased from 40.9 to 26.6% with the increasing recycling rate. The attached biomass analysis showed the presence of bacteria (73.4 $mg/cm^2$) on the surface of added media in anoxic reactor. Pseudomonas aeruginosa a common denitrifying bacterium dominated the bacterial growth (58%) in the anoxic reactor which was determined using Fluorescence In Situ Hybridization (FISH) analysis.

Low Temperature Effects on the Nitrification in a Nitrogen Removal Fixed Biofilm Process Packed with SAC Media

  • Jang, Se-Yong;Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A fixed biofilm reactor system composed of anaerobic, anoxic(1), anoxic(2), aerobic(1) and aerobic(2) reactor was packed with synthetic activated ceramic (SAC) media and adopted to reduce the inhibition effect of low temperature on nitrification activities. The changes of nitrification activity at different wastewater temperature were investigated through the evaluation of temperature coefficient, volatile attached solid (VAS), specific nitrification rate and alkalinity consumption. Operating temperature was varied from 20 to $5^{\circ}C$. In this biofilm system, the specific nitrification rates of $15^{\circ}C$, $10^{\circ}C$ and $5^{\circ}C$ were 0.972, 0.859 and 0.613 when the specific nitrification rate of $20^{\circ}C$ was assumed to 1.00. Moreover the nitrification activity was also observed at $5^{\circ}C$ which is lower temperature than the critical temperature condition for the microorganism of activated sludge system. The specific amount of volatile attached solid (VAS) on media was maintained the range of 13.6-12.5 mg VAS/g media at $20{\sim}10^{\circ}C$. As the temperature was downed to $5^{\circ}C$, VAS was rapidly decreased to 10.9 mg VAS/g media and effluent suspended solids was increased from 3.2 mg/L to 12.0 mg/L due to the detachment of microorganism from SAC media. And alkalinity consumption was lower than theoretical value with 5.23 mg as $CaCO_3$/mg ${NH_4}^+$-N removal at $20^{\circ}C$. Temperature coefficient (${\Theta}$) of nitrification rate ($20^{\circ}C{\sim}5^{\circ}C$) was 1.033. Therefore, this fixed film nitrogen removal process showed superior stability for low temperature condition than conventional suspended growth process.

Sericin-Fixed Silk Fiber as an Immobilization Support of Enzyme

  • Lee Ki Hoon;Kang Gyung Don;Shin Bong Seob;Park Young Hwan
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • In this study, we attempted to evaluate a novel use of sericin-fixed silk fiber (SFx) as an immobilization support of enzyme. Sericin was fixed on the silk fiber using glutaraldehyde as a fixation reagent. After 6 hours of fixation, the degree of fixation increases linearly with linear decrease of the amount of bound $\alpha$-chymotrypsin (CT). This suggests that the increase of the degree of fixation is due to the further crosslinking of free aldehyde groups on the surface of sericin-fixed silk fiber (SFx). Even though perfect fixation was not achieved, sericin did not dissolve seriously and could be removed by further washing. The specific activity did not differ significantly after 6 hours of fixation. The activity of immobilized CT on SFx decreased to its half after 6 hours of incubation at 50$^{\circ}C$. However, it retained $78\%$ of initial activity even after 1 hour of treat­ment with $100\%$ ethanol. As a result, the SFx could be used as an immobilization support of enzyme in non-aqueous media at ambient temperature.

A Study on a Fixed Bed Biofilm Process Using Porous Glass Media (다공성(多孔性) 유리메디아를 이용한 고정상(固定床) 생물막법(生物膜法)에 관한 연구(硏究))

  • Yoon, Tae Il;Kim, Jae Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.1
    • /
    • pp.112-120
    • /
    • 1996
  • In this study, the porous glass media was utilized as biomass carrier, and the optimum characteristics of this new media in fixed bed biofilm process were investigated. The characteristics of media considered here are a void volume fraction, a specific surface area, and surface characteristics of media. The effect of surface roughness and material could be clearly demonstrated by the fact that the porous glass media showed a good potential for biofilm development. This might results from the fact that biofilm is initially formed in the surface cavities of the media is protect from the shear effect. Therefore, the microcolonies are not readily detached by the fluid shear. In the steady state, biofilm formation along the packing bed depth was different from media to media. The specific area was also an important factor for the attachment of microorganism on the media surface. The specific area was also an important factor for the attachment of microorganism on the media surface. In the case of porous glass media, about $100m^2/m^3$ was enough to obtain a good organic removal efficiency The organic removal efficiency could be improved by increasing the void volume fraction in the reactor, at least 80% was required to obtain a high removal efficiency and prevent clogging. From the analysis of kinetics study, the yield coefficient, Y, was 0.42 mgMLSS/mgSBOD, endogenous respiration coefficient, ke, was $0.12day^{-1}$ and substrate removel coefficient of Mckinney. km, was $16.8hr^{-1}$ for the porous glass media G-2

  • PDF

A multimedia synchronization mechanism using receiver buffer-level (수신측 버퍼 레벨을 이용한 멀티미디어 동기화 기법)

  • 김승천;박기현;이현태;박재성;이재용;이상배
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1334-1342
    • /
    • 1997
  • The future data communications are expected to support the various andcomplex services withmultimedia. So thispaper has focused on the multimedia synchronization problem which has important position in multimedia presentation. Firstly, this paper consider the suitable layer for multimedia synchronization in the communication structure as transport layer or upper ones, in which we propose synchronization mechanism using fixed length buffer with bufer-lever or upper ones, in which we propose synchronization mechanism using fixed length bufer with buffer-level. The proposed mechansim also supports intra-and inter-media synchronization among media. Through simulation, we prove our analysis of the fixed-length buffersize that theproposed mechanism can provide. Also we show comparisons between our mechanism and other scheme.

  • PDF

The Basic Design Parameters and Effluent Characteristics for Aerobic Fixed Biofilm Reactor (호기성 고정생물막 반응기에서 기초 설계인자와 유출수의 성상)

  • 박태주;송승구
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.235-245
    • /
    • 1992
  • A number of experiments to treat wastewater of a dye plant were conducted to investigate the basic design parameters and effluent characteristics for aerobic fixed biofilm reactor upon the variation of organic loading rate. The media used for this study were SARAN 4000 D with specific surface area $153m^2/m^3$, and 1000 D with specific surface area $307m^2/m^3$. The influent COD concentration ranged from 1250 to 4080 mg/L. Substrate removal and variation of biomass concentration were observed. At the beginning, the effluent quality was poor but improved as the time passed. However the effluent quality became seriously deteriorated when the media clogged. At influent COD of 1250mg/L, the effluent COD varied little, even if the organic loading rate increased from 0.63 to 2.5kg COD/$m^3$/day. It was also noted that the design parameters for activated sludge process could be applied to an aerobic fixed biofilm process under the experimental conditions.

  • PDF