• Title/Summary/Keyword: Five-Toed Shoe

Search Result 4, Processing Time 0.02 seconds

The Effects of Shoe Type on Ground Reaction Force

  • Yi, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The purpose of this study is to analyze the effects of both various shoe types and bare feet on ground reaction force while walking. Ten first-year female university students were selected. A force platform(Kistler, Germany) was used to measure ground reaction force. Six types of shoe were tested: flip flops, canvas shoes, running shoes, elevated forefoot walking shoes, elevated midfoot walking shoes, and five-toed shoes. The control group was barefooted. Only vertical passive/active ground reaction force variables were analyzed. The statistical analysis was carried out using the SAS 9.1.2 package, specifically ANOVA, and Tukey for the post hoc. The five-toed shoe had the highest maximum passive force value; while the running shoe had the lowest. The first active loading rate for running shoes was the highest; meanwhile, bare feet, the five-toed shoe, and the elevated fore foot walking shoe was the lowest. Although barefoot movement or movement in five toed shoes increases impact, it also allows for full movement of the foot. This in turn allows the foot arch to work properly, fully flexing along three arches(transverse, lateral, medial), facilitating braking force and initiating forward movement as the tendons, ligaments, and muscles of the arch flex back into shape. In contrast movement in padded shoes have a tendency to pound their feet into the ground. This pounding action can result in greater foot instability, which would account for the higher loading rates for the first active peak for padded shoes.

The Immediate Effects of Five-Toed Shoes on Foot Structure

  • Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.397-403
    • /
    • 2011
  • The purpose of this study is to analyze the immediate effects of five toed shoes on foot structure. Subjects consisted of 26 college-aged women with pes planus. X-ray analysis of student feet were performed both barefooted and with five toed shoes. Dependent variables were hallux valgus angle, calcaneal inclination angle, 1st metatarsal declination angle, and intermetartarsal angle. Independent t-test was used for statistical analysis along with SAS. Overall, there were statistically significant changes of test subject's dependent variables when wearing five toed shoes. Specifically, the hallux valgus angle decreased, the calcaneal inclination angle and 1st metatarsal inclination angle increased, and intermetatasal angles both increased and decreased, shifting towards normal range. In every case the dependent variables shifted towards a more normal range while subjects wore five toed shoes. This study only examined the immediate corrective effects of five toed shoes on foot structure, but long-term studies are needed to understand the prolonged effects of five toed shoes on foot structure.

Quantitative and Qualitative Differences according to the Shoe Type for the Grand Jete Landing in Ballet

  • Yi, Kyung-Ok;Park, Hye-Rhee
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • The purpose of this study was to analyze quantitative and qualitative differences according to shoe type for the grand jete landing in ballet. The subjects for this study were 9 female ballet majors with an average of 12 years of experience. Subjects jumped, performing a front split, and landed on 1 foot, a movement called the grand jete. Analysis was performed on the students' landing. Independent variables were 3 shoe types: split sole, traditional out sole, and 5-toed forefoot shoes, with bare feet as a control group. Dependent variables were vertical passive ground reaction force and qualitative elements. Passive ground reaction force variables(maximum passive peak value, number of passive peaks, passive force-time integral, and center of pressure) were measured by the Kistler 9281B Force Platform. Qualitative elements were comfort, cushioning, pain, and fit. Statistical analysis included both 1-way ANOVA and Tukey's test for follow-up. Finalized data demonstrated that the 5-toed forefoot shoe allows the forefoot to expand and the toes to individually press down upon landing, increasing foot contact with the surface. Five-toed forefoot shoes minimize passive peaks and pain, while increasing comfort, cushioning, and fit. Most ballet movements are composed of jumping, balancing, landing, and spinning. Wearing 5-toed forefoot shoes allows for a natural range of movement in each toe, to improve both technique and balance. Pain and injuries from ballet can be minimized by wearing the correct shoe type. According to this analysis, it is possible to customized ballet shoes to increase the efficiency of techniques and movements.

Qualitative Analysis of Pressure Intensity and Center of Pressure Trajectory According to Shoe Type

  • Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.261-268
    • /
    • 2012
  • The purpose of this study was to qualitatively analyze pressure intensity and the center of pressure(COP) trajectory according to shoe type. Subjects were ten first-year female university students. The EMED-AT 25/D(Novel, Germany) was used to measure pressure intensity and COP trajectory. The COP Excursion Index(CPEI) was used for within subject test design. Independent variables were bare feet and six types of shoes. Dependent variables were center of pressure trajectory and pressure intensity. Barefeet and five toed shoes had a similar pressure intensity and COP trajectory. COP trajectory for all other shoe types showed a medial wobble at the heel. Pressure intensity for all other shoe types was related to the structure of the shoes. In conclusion, different shoe types can not only affect gait, but they can also influence foot deformities, pain, and dysfunction.