• 제목/요약/키워드: Fitting strength

검색결과 146건 처리시간 0.022초

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.

Experimental study on the tensile strength of gravelly soil with different gravel content

  • Ji, Enyue;Chen, Shengshui;Zhu, Jungao;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.271-278
    • /
    • 2019
  • In recent years, the crack accidents of earth and rockfill dams occur frequently. It is urgent to study the tensile strength and tensile failure mechanism of the gravelly soil in the core for the anti-crack design of the actual high earth core rockfill dam. Based on the self-developed uniaxial tensile test device, a series of uniaxial tensile test was carried out on gravelly soil with different gravel content. The compaction test shows a good linear relationship between the optimum water content and gravel content, and the relation curve of optimum water content versus maximum dry density can be fitting by two times polynomial. For the gravelly soil under its optimum water content and maximum dry density, as the gravel content increased from 0% to 50%, the tensile strength of specimens decreased from 122.6 kPa to 49.8 kPa linearly. The peak tensile strain and ultimate tensile strain all decrease with the increase of the gravel content. From the analysis of fracture energy, it is proved that the tensile capacity of gravelly soil decreases slightly with the increasing gravel content. In the case that the sample under the maximum dry density and the water content higher than the optimum water content, the comprehensive tensile capacity of the sample is the strongest. The relevant test results can provide support for the anti-crack design of the high earth core rockfill dam.

Machine learning model for predicting ultimate capacity of FRP-reinforced normal strength concrete structural elements

  • Selmi, Abdellatif;Ali, Raza
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.315-335
    • /
    • 2023
  • Limited studies are available on the mathematical estimates of the compressive strength (CS) of glass fiber-embedded polymer (glass-FRP) compressive elements. The present study has endeavored to estimate the CS of glass-FRP normal strength concrete (NSTC) compression elements (glass-FRP-NSTC) employing two various methodologies; mathematical modeling and artificial neural networks (ANNs). The dataset of 288 glass-FRP-NSTC compression elements was constructed from the various testing investigations available in the literature. Diverse equations for CS of glass-FRP-NSTC compression elements suggested in the previous research studies were evaluated employing the constructed dataset to examine their correctness. A new mathematical equation for the CS of glass-FRP-NSTC compression elements was put forwarded employing the procedures of curve-fitting and general regression in MATLAB. The newly suggested ANN equation was calibrated for various hidden layers and neurons to secure the optimized estimates. The suggested equations reported a good correlation among themselves and presented precise estimates compared with the estimates of the equations available in the literature with R2= 0.769, and R2 =0.9702 for the mathematical and ANN equations, respectively. The statistical comparison of diverse factors for the estimates of the projected equations also authenticated their high correctness for apprehending the CS of glass-FRP-NSTC compression elements. A broad parametric examination employing the projected ANN equation was also performed to examine the effect of diverse factors of the glass-FRP-NSTC compression elements.

Development of Design Formula for Predicting Post-Buckling Behaviour and Ultimate Strength of Cylindrical Shell

  • Lee, Jung-Ho;Oh, Young-Cheol;Seo, Kwang-Cheol
    • 해양환경안전학회지
    • /
    • 제23권3호
    • /
    • pp.313-319
    • /
    • 2017
  • Cylindrical shells are often used in ship structures at deck plating with a camber, side shell plating at fore and aft parts, and bilge structure part. It has been believed that such curved shells can be modelled fundamentally by a part of a cylinder under axial compression. From the estimations with the usage of cylinder models, it is known that, in general, curvature increases the buckling strength of a curved shell subjected to axial compression, and that curvature is also expected to increase the ultimate strength. We conduct series of elasto-plastic large deflection analyses in order to clarify the fundamentals in buckling and plastic collapse behaviour of cylindrical shells under axial compression. From the numerical results, we derive design formula for predicting the ultimate strength of cylindrical shell, based on a series of the nonlinear finite element calculations for all edges, simply supporting plating, varying the slenderness ratio, curvature and aspect ratio, as well as the following design formulae for predicting the ultimate strength of cylindrical shell. From a number of analysis results, fitting curve can be developed to use parameter of slenderness ratio with implementation of the method of least squares. The accuracy of design formulae for evaluating ultimate strength has been confirmed by comparing the calculated results with the FE-analysis results and it has a good agreement to predict their ultimate strength.

생산성을 고려한 볼라드 및 볼라드 지지 구조의 최종강도 평가 (Ultimate Strength Assessment of Bollard and Its Foundation Considering Production Costs)

  • 오창민;정준모;조상래
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.604-610
    • /
    • 2006
  • Common structural rules of JBP(Joint Bulker Project) and JTP(Joint Tanker Project), which will come into effect in 2006, invoke the necessity of the ultimate limit state(ULS) design for ship structures. Even though the many applications of ULS analysis have been performed for ship structures, there have few studies carried out for deck machineries and their supporting structures. Recently four major Korean shipbuilders(DSME, HHI, HHIC, SHI) jointly developed and proposed a new design standards for mooring fittings and also proposed the SWL (Safety Working Load) obtained based on the first yield criterion. In this study, various ultimate strength analyses were performed for bollards and their foundation structures whose yield strengths were quantified by the research consortium. Prior to performing the ultimate strength analyses, the numerical calculation method was substantiated with the test results provided in the joint work report. Based upon the results of this study, it can be concluded that the reinforcements to increase the yield strength are not always resulted in the enhancement of the ultimate strength. Furthermore, the additional production costs for the reinforcements can not be rewarded by the ultimate strength. Therefore, another alternative arrangements should be developed in the view point of ultimate strength.

스퍼기어 단조용 예압된 금형의 설계에 관한 연구 (A Study on The Design of Prestressed Die for Spur Gear Forging)

  • 허관도;여홍태;송요선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.19-22
    • /
    • 2003
  • In this study, the design of prestressed die for spur gear forging have been investigated. The stress concentration at notch of the die insert is very important in the design of die for the forging of spur gear such as non-axisymmetric geometry. In the previous study, the flexible tolerance method was used in order to search the optimal value of design variables considering the constrain conditions. In the design process, it was also involved the safety factor to the yield strength of each ring by considering allowable tensile or compressive hoop stress in each ring. Using this technique, the die deign for spur gear forging has been successfully performed without yielding of the die after shrink fitting and during forging.

  • PDF

박판 금속의 엠보싱을 위한 냉간 성형 연구 (A Study on the Cold Rolling for the Embossing of Metal Sheet)

  • 이광석;김상우;신민철;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.397-400
    • /
    • 2009
  • When the metal sheet is subjected to the housing surface for fitting and insulating from harsh surroundings like fluid ingression or hot steam, both strength and formability have to be equally considered. In this regard, the main aim of this study is to design an apparatus of cost-effectively producing flexible fluted band with increasing the formability of embossed stainless steel sheet, which is utilized as a thermal insulation metal for housing ship engine exhauster. Designed to fabricate a maximum sheet width of 700 mm, this new apparatus consists of upper roll made of hard urethane and the female-etched lower roll made of SKD11, have a producing capacity up to 1-meter homogeneously embossed sheet for just 60 seconds. This machine is devised for the maximum operating efficiency from original sheet handling to machine setting. The embossing properties are characterized by 3-D profiling. After embossing plain metal sheet, both yield strength and elongation properties are improved simultaneously, indicating the effectiveness of the newly designed apparatus.

  • PDF

활성탄을 이용한 다성분계 페놀산 용액의 고정층 흡착 (Fixed-bed Adsorption of Phenolic Acids on Charcoal in Multi Solutes System)

  • 이원영;최용희
    • Current Research on Agriculture and Life Sciences
    • /
    • 제15권
    • /
    • pp.83-91
    • /
    • 1997
  • 페놀성 화합물들은 단백질이나 금속 이온들과 결합하는 성질을 지녀 식품분야에서는 영양 저해물질 혹은 갈변의 원인물질로 알려져 있으며 또 이들물질이 상수원에 유입시 염소와 결합하여 악취나 발암물질을 형성하는 등 환경적으로 유해한 물질로 알려져 있다. 그러나 최근에는 이들 물질들의 항미생물 효과, 항암효과 등이 밝혀짐에 따라 유용한 물질로 이용될 가능성이 매우 높아졌다. 이들 물질들의 제거 또는 회수는 곧 유해물질의 제거 혹은 유용성분의 분리의 의미가 된다. 따라서 본 실험에서는 연속식 고정층 흡착을 다성분계 페놀산 용액에서 행하여 실제 흡착공정에 적용시 필수적인 자료인 파과곡선 및 파과점을 nonlinoar curve fitting방법을 이용하여 산정하였다. 흡착질의 종류가 증가할수록 파과곡선의 적합성은 점점 낮아졌으며 흡착속도에 있어서는 gallic acid가 가장 빨리 파과점을 지나고 ferulic acid, p-coumaric acid의 순으로 나타났다. 이들 결과로부터 다성분계에서의 연속식 고정층 흡착은 흡착제와 흡착질간의 ionic strength와 흡착질간의 분자량의 차이가 흡착량과 파과속도에 영향을 미치는 것으로 생각된다.

  • PDF

Applying a Forced Censoring Technique with Accelerated Modeling for Improving Estimation of Extremely Small Percentiles of Strengths

  • Chen Weiwei;Leon Ramon V.;Young Timothy M.;Guess Frank M.
    • International Journal of Reliability and Applications
    • /
    • 제7권1호
    • /
    • pp.27-39
    • /
    • 2006
  • Many real world cases in material failure analysis do not follow perfectly the normal distribution. Forcing of the normality assumption may lead to inaccurate predictions and poor product quality. We examine the failure process of the internal bond (IB or tensile strength) of medium density fiberboard (MDF). We propose a forced censoring technique that closer fits the lower tails of strength distributions and better estimates extremely smaller percentiles, which may be valuable to continuous quality improvement initiatives. Further analyses are performed to build an accelerated common-shaped Weibull model for different product types using the $JMP^{(R)}$ Survival and Reliability platform. In this paper, a forced censoring technique is implemented for the first time as a software module, using $JMP^{(R)}$ Scripting Language (JSL) to expedite data processing, which is crucial for real-time manufacturing settings. Also, we use JSL to automate the task of fitting an accelerated Weibull model and testing model homogeneity in the shape parameter. Finally, a package script is written to readily provide field engineers customized reporting for model visualization, parameter estimation, and percentile forecasting. Our approach may be more accurate for product conformance evaluation, plus help reduce the cost of destructive testing and data management due to reduced frequency of testing. It may also be valuable for preventing field failure and improved product safety even when destructive testing is not reduced by yielding higher precision intervals at the same confidence level.

  • PDF

한국 연근해에서 어획된 주요 12어종의 75 kHz에 대한 음향 반사 강도의 체장 의존성 (Fish length dependence of acoustic target strength for 12 dominant fish species caught in the Korean waters at 75 kHz)

  • 이대재
    • 수산해양기술연구
    • /
    • 제41권4호
    • /
    • pp.296-305
    • /
    • 2005
  • Acoustic target strength (TS) of 12 commercially important fish species caught in the Korean waters had been investigated and their results were presented. Laboratory measurements of target strength on 12 dominant fish species were carried out at a frequencies of 75 kHz by single beam method under the controlled condition of the water tank with the 241 samples of dead and live fishes. The target strength pattern on individual fish of each species was measured as a function of tilt angle, ranging from $-45^{\circ}$ (head down aspect) to $45^{\circ}$ (head up aspect) in $0.2^{\circ}$ intervals, and the averaged target strength was estimated by assuming the tilt angle distribution as N ($-5.0^{\circ}$, $^15.0{\circ}$). The 75 to fish length relationship for each species was independently derived by a least - squares fitting procedure. Also, a linear regression analysis for all species was performed to reduce the data to a set of empirical equations showing the variation of target strength to fish length and fish species. An empirical model for fish target strength(TS, dB) averaged over the dorsal aspect of 158 fishes of 7 species and which spans the fish length(L, m) to wavelength(${\lambda}$, m) ratio between 6.2 and 21.3 was derived: TS: 27.03 Log(L)-7.7Log(${\kanbda}$)-17.21, ($r^2$=0.59).