• Title/Summary/Keyword: Fitting Model

Search Result 1,327, Processing Time 0.031 seconds

An Accurate Model of Multi-Type Overcurrent Protective Devices Using Eigensystem Realization Algorithm and Practice Applications

  • Cheng, Chao-Yuan;Wu, Feng-Jih
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.9-19
    • /
    • 2016
  • Accurate models of the characteristics of typical inverse-time overcurrent (OC) protective devices play an important role in the protective coordination schemes. This paper presents a novel approach to determine the OC protective device parameters. The approach is based on the Eigensystem Realization Algorithm which generates a state space model to fit the characteristics of OC protective devices. Instead of the conventional characteristic curves, the dynamic state space model gives a more exact fit of the OC protective device characteristics. This paper demonstrates the feasibility of decomposing the characteristic curve into smooth components and oscillation components. 19 characteristic curves from 13 typical and 6 non-typical OC protective devices are chosen for curve-fitting. The numbers of fitting components required are determined by the maximum absolute values of errors for the fitted equation. All fitted equations are replaced by a versatile equation for the characteristics of OC protective devices which represents the characteristic model of a novel flexible OC relay, which in turn may be applied to improve the OC coordination problems in the sub-transmission and distribution systems.

Hyper-elastic Model Haptic Feedback Using Finite Element Analysis (유한요소 해석을 이용한 초탄성체 햅틱 피드백 연구)

  • Park, Seunghyun;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.260-265
    • /
    • 2022
  • In this study, we establish hyper-elastic haptic feedback in a virtual environment using finite element analysis techniques and develop a Force Torque (FT) sensor utilization method for application in tele-operation environments. In general, regarding haptic feedback data, in a tele-operation environment, the user is provided with feedback according to the measured force data when the model is inserted through an FT sensor. Conversely, in a virtual environment, the press-fitting model can be expressed through the spring-damper system rather than an FT sensor to provide feedback. However, unlike rigid and the elastic bodies, the hyper-elastic body represented by a spring-damper system in a virtual environment is a simple impedance model using stiffness and damping coefficients; it is limited in terms of providing actual feedback. Thus, in this study, haptic feedback was implemented using the data obtained from POD-RBF analysis results during hyper-elastic press-fitting experiments. The haptic feedback mechanism developed in this study was verified by comparing the FT sensor feedback data measured and calculated through hyper-elastic press-fitting experiments with spring-damper feedback data. Subsequently, the POD-RBF analysis feedback was compared and evaluated against the feedback mechanism of each environment through the test subject, and the similarities between the POD-RBF analysis feedback and FT sensor data feedback were verified.

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

Comparison of accuracy between LC model and 4-PFM when COVID-19 impacts mortality structure

  • Choi, Janghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.233-250
    • /
    • 2021
  • This paper studies if the accuracies of mortality models (LC model vs. 4-parametric model) are aggravated if a mortality structure changes due to the impact of COVID-19. LC model (LCM) uses dimension reduction for fitting to the log mortality matrix so that the performance of the dimension reduction method may not be good when the matrix structure changes. On the other hand, 4-parametric factor model (4-PFM) is designed to use factors for fitting to log mortality data by age groups so that it would be less affected by the change of the mortality structure. In fact, the forecast accuracies of LCM are better than those of 4-PFM when life-tables are used whereas those of 4-PFM are better when the mortality structure changes. Thus this result shows that 4-PFM is more reliable in performance to the structural changes of the mortality. To support the accuracy changes of LCM the functional aspect is explained by computing eigenvalues produced by singular vector decomposition

A Compensated Current Acqaisition Device for CT Saturation (왜곡 전류 보상형 전류 취득 장치)

  • Ryu, Ki-Chan;Gang, Soo-Young;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.96-98
    • /
    • 2005
  • In this paper, an algorithm to compensate the distorted signals due to Current Transformer(CT) saturation is suggested, First, DWT which can be easily realized by filter banks in real-time applications is used to detect a start point and an end point of the saturation. Secondly, For enough Datas those need to use the least-square curve fitting method, the distorted current signal is compensated by the AR(autoregressive) model using the data during the previous healthy section until pick point of Saturation. Thirdly, the least-square curve fitting method is used to restore the distorted section of the secondary current. Finaly, this algorithm had a Hadware test using DSP board(TMS320C32) with Doble test device. DWT has superior detection accuracy and the proposed compensation algorithm which shows very stable features under various levels of remanent flux in the CT core is also satisfactory. And this algorithm is more correct than a previous algorithm which is only using the LSQ fitting method. Also it can be used as a MU involving the compensation function that acquires the second data from CT and PT.

  • PDF

Real-Time Rotation-Invariant Face Detection Using Combined Depth Estimation and Ellipse Fitting

  • Kim, Daehee;Lee, Seungwon;Kim, Dongmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.

  • PDF

Manufacturing and error compensation of interpolated curves and surfaces for reverse Engineering (Reverse Engineering을 위한 보간곡선, 곡면의 가공 및 오차 보정)

  • 양재봉
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.230-234
    • /
    • 1997
  • Reverse engineering involves digitizing a three-dimensional model or part converting the data to a CAD database description and manufacturing by CNC. Currently, the digitization is done through measurements taken manually by a CMM or touch probe mounted on a CNC machinetool. Some reverse engineering techniques require close integration between the data collection method and the surface-fitting algorithms. Accurate surface data are collected by input to the surface fitting method. This study has been found that both the smoothness of surfaces and accuracy of surface fitting are related with the degree of the interpolated surfaces.

  • PDF

Conservative Quadratic RSM combined with Incomplete Small Composite Design and Conservative Least Squares Fitting

  • Kim, Min-Soo;Heo, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.698-707
    • /
    • 2003
  • A new quadratic response surface modeling method is presented. In this method, the incomplete small composite design (ISCD) is newly proposed to .educe the number of experimental runs than that of the SCD. Unlike the SCD, the proposed ISCD always gives a unique design assessed on the number of factors, although it may induce the rank-deficiency in the normal equation. Thus, the singular value decomposition (SVD) is employed to solve the normal equation. Then, the duality theory is used to newly develop the conservative least squares fitting (CONFIT) method. This can directly control the ever- or the under-estimation behavior of the approximate functions. Finally, the performance of CONFIT is numerically shown by comparing its'conservativeness with that of conventional fitting method. Also, optimizing one practical design problem numerically shows the effectiveness of the sequential approximate optimization (SAO) combined with the proposed ISCD and CONFIT.

Compar ison of Level Set-based Active Contour Models on Subcor tical Image Segmentation

  • Vongphachanh, Bouasone;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.827-833
    • /
    • 2015
  • In this paper, we have compared three level set-based active contour (LSAC) methods on inhomogeneous MR image segmentation which is known as an important role of brain diseases to diagnosis and treatment in early. MR image is often occurred a problem with similar intensities and weak boundaries which have been causing many segmentation methods. However, LSAC method could be able to segment the targets such as the level set based on the local image fitting energy, the local binary fitting energy, and local Gaussian distribution fitting energy. Our implemented and tested the subcortical image segmentations were the corpus callosum and hippocampus and finally demonstrated their effectiveness. Consequently, the level set based on local Gaussian distribution fitting energy has obtained the best model to accurate and robust for the subcortical image segmentation.

STRUCTURE OF THE SPIRAL GALAXY NGC 300 II. Applications of the Mass Models

  • Rhee, Myung-Hyun;Chun, Mun-Suk
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.11-21
    • /
    • 1992
  • Applying mass model to disk galaxy NGC 300, since the observed rotation curve of NGC 300 is flatter than Toomre's mass model n = 1, two cases are used; obtaining parameters $a^n$ and $b^n$ from the polynomial fitting of the observed rotation curve (case A) and from the least square fitting between the observed rotation curve and model rotation curve (case B). In any case, n bas a fixed value of 1. Brandt's mass model is also discussed. which has a shape parameter n = 1.4. Calculated total mass and total mass to luminosity ratio are $3.3{\times}10^{10}M_{\odot}$, l2.1 for case A and $2.8{\times}10^{10}M_{\odot}$, 10.3 for case B. In case of Brandt's model, the values are $4.2{\times}10^{10}M_{\odot}$ and 15.4. The rise in the local mass to luminosity ratio in the outer part of NGC 300 implies existence of massive halo. Other dynamical properties are also discussed.

  • PDF