Cooperative coevolutionary algorithm (CCEA) has proven to be a very powerful means of solving optimization problems through problem decomposition. CCEA implies the use of several populations, each population having the aim of finding a partial solution for a component of the considered problem. Populations evolve separately and they interact only when individuals are evaluated. Interactions are made to obtain complete solutions by combining partial solutions, or collaborators, from each of the populations. In this respect, we can think of various interaction modes. The goal of this research is to develop a CCEA for a supply chain network design (SCND) problem and identify which interaction mode gives the best performance for this problem. We present general design principle of CCEA for the SCND problem, which require several co-evolving populations. We classify these populations into two groups and classify the collaborator selection scheme into two types, the random-based one and the best fitness-based one. By combining both two groups of population and two types of collaborator selection schemes, we consider four possible interaction modes. We also consider two modes of updating populations, the sequential mode and the parallel mode. Therefore, by combining both four possible interaction modes and two modes of updating populations, we investigate seven possible solution algorithms. Experiments for each of these solution algorithms are conducted on a few test problems. The results show that the mode of the best fitness-based collaborator applied to both groups of populations combined with the sequential update mode outperforms the other modes for all the test problems.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.7
/
pp.943-948
/
2018
In this paper, we propose a hybrid approach of combining $A^*$ and Genetic algorithm in the path search problem. In $A^*$, the cost from a start node to the intermediate node is optimized in principle but the path from that intermediate node to the goal node is generated and tested based on the cumulated cost and the next node in a priority queue is chosen to be tested. In that process, we adopt the genetic algorithm principle in that the group of nodes to generate the next node from an intermediate node is tested by its fitness function. Top two nodes are selected to use crossover or mutation operation to generate the next generation. If generated nodes are qualified, those nodes are inserted to the priority queue. The proposed method is compared with the original sequential selection and the random selection of the next searching path in $A^*$ algorithm and the result verifies the superiority of the proposed method.
Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.
In order to provide basic data for designing the outdoor exercise environment to promote the health of the citizens, this study has analyzed the status of citizens' use of outdoor exercise places that have been supplied extensively recently and the factors affecting the citizens' choice of the places. A survey was made on 20 spots in 12 places where outdoor exercise equipment is installed to identify the characteristics of use and the factors affecting the selection of the spots and for the 1,733 survey sheets collected finally SPSS program was used to analyze the multiple answers. Major results of this research are as follows: First, since light exercise equipment mostly for bodily exercises has been installed, it has brought practical effects for the physically weak people, aged people and the people who scarcely exercise, while decreasing the users' economic burdens. Second, the scales of important factors the users think in selecting their exercise spots were 'spaciousness (2,028 times)' > 'accessibility (1,751 times)' > 'fitness (1,583' > 'supportability (1,445)' > 'community centeredness (1,260).' Third, the ratios of important factors regarding the choice of environment of outdoor exercise were 'near to walk (16.1%)' > 'nice natural environment (12.3%)' > 'always free to exercise (9.7%)' > 'shortage of exercise equipment (7.4%)' > 'possible to accompany family/neighbors (6.7%)' > 'no economic burden (6.5%).
International Journal of Computer Science & Network Security
/
v.22
no.1
/
pp.167-174
/
2022
In metaheuristic algorithms such as Genetic Algorithm (GA), initial population has a significant impact as it affects the time such algorithm takes to obtain an optimal solution to the given problem. In addition, it may influence the quality of the solution obtained. In the machine learning field, feature selection is an important process to attaining a good performance model; Genetic algorithm has been utilized for this purpose by scientists. However, the characteristics of Genetic algorithm, namely random initial population generation from a vector of feature elements, may influence solution and execution time. In this paper, the use of a statistical algorithm has been introduced (Chi2) for feature relevant checks where p-values of conditional independence were considered. Features with low p-values were discarded and subject relevant subset of features to Genetic Algorithm. This is to gain a level of certainty of the fitness of features randomly selected. An ensembled-based learning model for Hepatitis has been developed for Hepatitis C stage classification. 1385 samples were used using Egyptian-dataset obtained from UCI repository. The comparative evaluation confirms decreased in execution time and an increase in model performance accuracy from 56% to 63%.
Park, Aaron;Baek, Sung-June;Park, Jun-Qyu;Seo, Yu-Gyung;Won, Yonggwan
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.3
/
pp.124-131
/
2016
Baseline correction is very important due to influence on performance of spectral analysis in application of spectroscopy. Baseline is often estimated by parameter selection using visual inspection on analyte spectrum. It is a highly subjective procedure and can be tedious work especially with a large number of data. For these reasons, it is an objective and automatic procedure is necessary to select optimal parameter value for baseline correction. Asymmetrically reweighted penalized least squares (arPLS) based on penalized least squares was proposed for baseline correction in our previous study. The method uses a new weighting scheme based on the generalized logistic function. In this study, we present an automatic selection of optimal parameter for baseline correction using arPLS. The method computes fitness and smoothness values of fitted baseline within available range of parameters and then selects optimal parameter when the sum of normalized fitness and smoothness gets minimum. According to the experimental results using simulated data with varying baselines, sloping, curved and doubly curved baseline, and real Raman spectra, we confirmed that the proposed method can be effectively applied to optimal parameter selection for baseline correction using arPLS.
Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.2
no.1
/
pp.95-110
/
1998
Evolutionary Algorithms (EAs) are population-based optimization methods based on the principle of Darwinian natural selection. The representative methodology in EAs is genetic algorithm (GA) proposed by J. H. Holland, and the theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning of these foundational concepts, simple genetic algorithm (SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithm. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. And predator-prey co-evolution and symbiotic co-evolution, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. And the experimental results show a co-evolutionary algorithm works well in optimization problems even though in deceptive functions.
The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.
Xiaoling, Guo;Xinghua, Sun;Ling, Li;Renjie, Wu;Meng, Liu
Journal of Information Processing Systems
/
v.19
no.1
/
pp.17-32
/
2023
Centralized hierarchical routing protocols are often used to solve the problems of uneven energy consumption and short network life in wireless sensor networks (WSNs). Clustering and cluster head election have become the focuses of WSNs. In this paper, an energy balanced clustering routing algorithm optimized by sine cosine algorithm (SCA) is proposed. Firstly, optimal cluster head number per round is determined according to surviving node, and the candidate cluster head set is formed by selecting high-energy node. Secondly, a random population with a certain scale is constructed to represent a group of cluster head selection scheme, and fitness function is designed according to inter-cluster distance. Thirdly, the SCA algorithm is improved by using monotone decreasing convex function, and then a certain number of iterations are carried out to select a group of individuals with the minimum fitness function value. From simulation experiments, the process from the first death node to 80% only needs about 30 rounds. This improved algorithm balances the energy consumption among nodes and avoids premature death of some nodes. And it greatly improves the energy utilization and extends the effective life of the whole network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.