• Title/Summary/Keyword: Fitness Selection

Search Result 157, Processing Time 0.049 seconds

A Study on Interaction Modes among Populations in Cooperative Coevolutionary Algorithm for Supply Chain Network Design (공급사슬 네트워크 설계를 위한 협력적 공진화 알고리즘에서 집단들간 상호작용방식에 관한 연구)

  • Han, Yongho
    • Korean Management Science Review
    • /
    • v.31 no.3
    • /
    • pp.113-130
    • /
    • 2014
  • Cooperative coevolutionary algorithm (CCEA) has proven to be a very powerful means of solving optimization problems through problem decomposition. CCEA implies the use of several populations, each population having the aim of finding a partial solution for a component of the considered problem. Populations evolve separately and they interact only when individuals are evaluated. Interactions are made to obtain complete solutions by combining partial solutions, or collaborators, from each of the populations. In this respect, we can think of various interaction modes. The goal of this research is to develop a CCEA for a supply chain network design (SCND) problem and identify which interaction mode gives the best performance for this problem. We present general design principle of CCEA for the SCND problem, which require several co-evolving populations. We classify these populations into two groups and classify the collaborator selection scheme into two types, the random-based one and the best fitness-based one. By combining both two groups of population and two types of collaborator selection schemes, we consider four possible interaction modes. We also consider two modes of updating populations, the sequential mode and the parallel mode. Therefore, by combining both four possible interaction modes and two modes of updating populations, we investigate seven possible solution algorithms. Experiments for each of these solution algorithms are conducted on a few test problems. The results show that the mode of the best fitness-based collaborator applied to both groups of populations combined with the sequential update mode outperforms the other modes for all the test problems.

Combining A* and Genetic Algorithm for Efficient Path Search (효율적인 경로 탐색을 위한 A*와 유전자 알고리즘의 결합)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.943-948
    • /
    • 2018
  • In this paper, we propose a hybrid approach of combining $A^*$ and Genetic algorithm in the path search problem. In $A^*$, the cost from a start node to the intermediate node is optimized in principle but the path from that intermediate node to the goal node is generated and tested based on the cumulated cost and the next node in a priority queue is chosen to be tested. In that process, we adopt the genetic algorithm principle in that the group of nodes to generate the next node from an intermediate node is tested by its fitness function. Top two nodes are selected to use crossover or mutation operation to generate the next generation. If generated nodes are qualified, those nodes are inserted to the priority queue. The proposed method is compared with the original sequential selection and the random selection of the next searching path in $A^*$ algorithm and the result verifies the superiority of the proposed method.

Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification (공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘)

  • Hong, Sung-Sam;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Since big-data text mining extracts many features and data, clustering and classification can result in high computational complexity and low reliability of the analysis results. In particular, a term document matrix obtained through text mining represents term-document features, but produces a sparse matrix. We designed an advanced genetic algorithm (GA) to extract features in text mining for detection model. Term frequency inverse document frequency (TF-IDF) is used to reflect the document-term relationships in feature extraction. Through a repetitive process, a predetermined number of features are selected. And, we used the sparsity score to improve the performance of detection model. If a spam mail data set has the high sparsity, detection model have low performance and is difficult to search the optimization detection model. In addition, we find a low sparsity model that have also high TF-IDF score by using s(F) where the numerator in fitness function. We also verified its performance by applying the proposed algorithm to text classification. As a result, we have found that our algorithm shows higher performance (speed and accuracy) in attack mail classification.

Selection Factors for Outdoor Sporting Goods in Seoul (도시민의 야외 운동장소 선택요인 분석)

  • Lee, Yeun-Sook;Lee, Dong-Joo;Ahn, Chang-Houn;Gu, Na-Eun
    • KIEAE Journal
    • /
    • v.11 no.2
    • /
    • pp.17-25
    • /
    • 2011
  • In order to provide basic data for designing the outdoor exercise environment to promote the health of the citizens, this study has analyzed the status of citizens' use of outdoor exercise places that have been supplied extensively recently and the factors affecting the citizens' choice of the places. A survey was made on 20 spots in 12 places where outdoor exercise equipment is installed to identify the characteristics of use and the factors affecting the selection of the spots and for the 1,733 survey sheets collected finally SPSS program was used to analyze the multiple answers. Major results of this research are as follows: First, since light exercise equipment mostly for bodily exercises has been installed, it has brought practical effects for the physically weak people, aged people and the people who scarcely exercise, while decreasing the users' economic burdens. Second, the scales of important factors the users think in selecting their exercise spots were 'spaciousness (2,028 times)' > 'accessibility (1,751 times)' > 'fitness (1,583' > 'supportability (1,445)' > 'community centeredness (1,260).' Third, the ratios of important factors regarding the choice of environment of outdoor exercise were 'near to walk (16.1%)' > 'nice natural environment (12.3%)' > 'always free to exercise (9.7%)' > 'shortage of exercise equipment (7.4%)' > 'possible to accompany family/neighbors (6.7%)' > 'no economic burden (6.5%).

Hepatitis C Stage Classification with hybridization of GA and Chi2 Feature Selection

  • Umar, Rukayya;Adeshina, Steve;Boukar, Moussa Mahamat
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2022
  • In metaheuristic algorithms such as Genetic Algorithm (GA), initial population has a significant impact as it affects the time such algorithm takes to obtain an optimal solution to the given problem. In addition, it may influence the quality of the solution obtained. In the machine learning field, feature selection is an important process to attaining a good performance model; Genetic algorithm has been utilized for this purpose by scientists. However, the characteristics of Genetic algorithm, namely random initial population generation from a vector of feature elements, may influence solution and execution time. In this paper, the use of a statistical algorithm has been introduced (Chi2) for feature relevant checks where p-values of conditional independence were considered. Features with low p-values were discarded and subject relevant subset of features to Genetic Algorithm. This is to gain a level of certainty of the fitness of features randomly selected. An ensembled-based learning model for Hepatitis has been developed for Hepatitis C stage classification. 1385 samples were used using Egyptian-dataset obtained from UCI repository. The comparative evaluation confirms decreased in execution time and an increase in model performance accuracy from 56% to 63%.

Automatic Selection of Optimal Parameter for Baseline Correction using Asymmetrically Reweighted Penalized Least Squares (Asymmetrically Reweighted Penalized Least Squares을 이용한 기준선 보정에서 최적 매개변수 자동 선택 방법)

  • Park, Aaron;Baek, Sung-June;Park, Jun-Qyu;Seo, Yu-Gyung;Won, Yonggwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.124-131
    • /
    • 2016
  • Baseline correction is very important due to influence on performance of spectral analysis in application of spectroscopy. Baseline is often estimated by parameter selection using visual inspection on analyte spectrum. It is a highly subjective procedure and can be tedious work especially with a large number of data. For these reasons, it is an objective and automatic procedure is necessary to select optimal parameter value for baseline correction. Asymmetrically reweighted penalized least squares (arPLS) based on penalized least squares was proposed for baseline correction in our previous study. The method uses a new weighting scheme based on the generalized logistic function. In this study, we present an automatic selection of optimal parameter for baseline correction using arPLS. The method computes fitness and smoothness values of fitted baseline within available range of parameters and then selects optimal parameter when the sum of normalized fitness and smoothness gets minimum. According to the experimental results using simulated data with varying baselines, sloping, curved and doubly curved baseline, and real Raman spectra, we confirmed that the proposed method can be effectively applied to optimal parameter selection for baseline correction using arPLS.

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

Co-Evolutionary Algorithm and Extended Schema Theorem

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.95-110
    • /
    • 1998
  • Evolutionary Algorithms (EAs) are population-based optimization methods based on the principle of Darwinian natural selection. The representative methodology in EAs is genetic algorithm (GA) proposed by J. H. Holland, and the theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning of these foundational concepts, simple genetic algorithm (SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithm. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. And predator-prey co-evolution and symbiotic co-evolution, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. And the experimental results show a co-evolutionary algorithm works well in optimization problems even though in deceptive functions.

  • PDF

Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm

  • Amini, Amir;Mohammadimehr, Mehdi;Faraji, Alireza
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.721-733
    • /
    • 2020
  • The present study investigates the employing of piezoelectric patches in active control of a sandwich plate. Indeed, the active control and optimal patch distribution on this structure are presented together. A sandwich plate with honeycomb core and composite reinforced by carbon nanotubes in facesheet layers is considered so that the optimum position of actuator/sensor patches pair is guaranteed to suppress the vibration of sandwich structures. The sandwich panel consists of a search space which is a square of 200 × 200 mm with a numerous number of candidates for the optimum position. Also, different dimension of square and rectangular plates to obtain the optimal placement of piezoelectric actuator/senor patches pair is considered. Based on genetic algorithm and LQR, the optimum position of patches and fitness function is determined, respectively. The present study reveals that the efficiency and performance of LQR control is affected by the optimal placement of the actuator/sensor patches pair to a large extent. It is also shown that an intelligent selection of the parent, repeated genes filtering, and 80% crossover and 20% mutation would increase the convergence of the algorithm. It is noted that a fitness function is achieved by collection actuator/sensor patches pair cost functions in the same position (controllability). It is worth mentioning that the study of the optimal location of actuator/sensor patches pair is carried out for different boundary conditions of a sandwich plate such as simply supported and clamped boundary conditions.

Centralized Clustering Routing Based on Improved Sine Cosine Algorithm and Energy Balance in WSNs

  • Xiaoling, Guo;Xinghua, Sun;Ling, Li;Renjie, Wu;Meng, Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.17-32
    • /
    • 2023
  • Centralized hierarchical routing protocols are often used to solve the problems of uneven energy consumption and short network life in wireless sensor networks (WSNs). Clustering and cluster head election have become the focuses of WSNs. In this paper, an energy balanced clustering routing algorithm optimized by sine cosine algorithm (SCA) is proposed. Firstly, optimal cluster head number per round is determined according to surviving node, and the candidate cluster head set is formed by selecting high-energy node. Secondly, a random population with a certain scale is constructed to represent a group of cluster head selection scheme, and fitness function is designed according to inter-cluster distance. Thirdly, the SCA algorithm is improved by using monotone decreasing convex function, and then a certain number of iterations are carried out to select a group of individuals with the minimum fitness function value. From simulation experiments, the process from the first death node to 80% only needs about 30 rounds. This improved algorithm balances the energy consumption among nodes and avoids premature death of some nodes. And it greatly improves the energy utilization and extends the effective life of the whole network.