• Title/Summary/Keyword: Fish school

Search Result 971, Processing Time 0.023 seconds

A Thronging Response of the Shoal of Rudder Fish , Seriola Dumerili ( Risso ) to Audible Underwater Sound (수중 가청음에 대한 잿방어 어군의 유집 반응)

  • 이창헌
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.285-289
    • /
    • 1997
  • A Held experiment was carried out to confirm the effect of underwater sound on the luring of fish school of rudder fish in a set net at the coast of Cheju Island. The effects of the acoustic emission on the luring of fish school were observed at a cage around a set net fishing ground using a manufactured underwater speaker. Underwater sounds that were emitted for the luring of fish school were the pure sounds of which frequency were 300Hz and 400Hz, engine noise and swimming sound. The results of the observation are as follows : 1. The input and output wave forms of a manufactured underwater speaker in water tank were similar to those in measurement frequencies. The result of the observation indicated that it could be used for the purpose of the sound emission in measurement frequencies. 2. The effect of the emitted pure sound of 300Hz, 400Hz was remarkable for the luring of fish school in 2 minutes after the sound emission. The reaction of fish school was more sensitive to the pure sound of 400Hz than 300Hz. 3. The effect of the emitted engine noise was more remarkable than that of the pure sound for 3 minute continuously. On the feeding sound, fish formed a shoal and swimmed, but didn't gather around the underwater speaker. 4. The feeding and swimming sound spectra on rudder Hsh showed similar sound pressure distribution each other, they appeared low sound pressure in frequencies of 200-600Hz.

  • PDF

A Study on the Leading Effect of Fish Attracting Lamps on Fish Schools into a Set-net -2. Behaviour of Fish Schools into a Set-net -2. Behaviour of Fish Schools to the Attracting Lamp- (집어등에 의한 정치망에의 어군유도에 관한 연구 2. 유도등에 대한 어군의 행동)

  • 김석종
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • We selected horse mackerel Trachurus japonicus, mackerel Scomber japonicus and arrow squid Todarodes pacificus, to use in the experiment. These fishes migrate to the Cheju coast and were caught by set-net. We studied the leading effect on the fish schools using the attracting lamps in an outdoor water tank at the Marine Research Institute in Cheju National University. The results obtained are summarized as follows; 1. The attracting rate of fish schools was increasing as the time between switching on and off each lamp was getting longer when each of the attracting lamps was switched on and off in order. However, the attracting rate of mackerel school showed a tendency to be higher than that of the other two species. 2. The attracting rate of fish schools was increasing as the time of switching off the lamps was getting longer when the attracting lamps which had been switched on were switched off in order. However, the attracting rate of mackerel school showed a tendency to be higher than that of the other two species. 3. The attracting rate of fish schools was decreasing as the speed of moving the attracting lamp was getting faster when the attracting lamp was moving. However, the attracting rate of mackerel school showed a tendency be higher than that of the other two species. 4. To determine the distance between the attracting lamps, there would be two methods. One is switching on and off the attracting lamps in order, and the other is switching off the attracting lamps in order which had been switched on. The methods showed that the attracting rate of fish schools were decreasing as the distance between the attracting lamps were getting longer. However, the attracting rate of mackerel school showed a tendency to be higher than that of the other two species.

  • PDF

Simulation of fish reaction against cage net with an individual fish behaviour model (개체기반 어군행동모델을 이용한 가두리망 내의 양식 어류의 유영행동 시뮬레이션)

  • Hwang, Bo-Kyu;Shin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.4
    • /
    • pp.419-427
    • /
    • 2011
  • Simulation technique for the fish behavior was applied to estimate fish school movement in the cage net. Individual-based fish behavior model (Huth and Wessel, 1991) was evaluated in a free area to understand the characteristics for the model, and the movement in the cage net was simulated by defining the fish reaction against the displacement of cage net. As a result, the distance to the net was not considerably changed and the space among fishes in cage net was slightly decreased by reducing the net space. Swimming area was, however, significantly affected by changing the net space and the relationship between swimming area and net displacement was theoretically estimated as y=-0.21x+1.02 ($R^2$=0.96). these results leads the conclusion that individual-based model was appropriated to describe the fish school reaction in the cage net and be able to use for evaluating the influence on cultured fish.

Position Detection and Gathering Swimming Control of Fish Robot Using Color Detection Algorithm (색상 검출 알고리즘을 활용한 물고기로봇의 위치인식과 군집 유영제어)

  • Akbar, Muhammad;Shin, Kyoo Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.510-513
    • /
    • 2016
  • Detecting of the object in image processing is substantial but it depends on the object itself and the environment. An object can be detected either by its shape or color. Color is an essential for pattern recognition and computer vision. It is an attractive feature because of its simplicity and its robustness to scale changes and to detect the positions of the object. Generally, color of an object depends on its characteristics of the perceiving eye and brain. Physically, objects can be said to have color because of the light leaving their surfaces. Here, we conducted experiment in the aquarium fish tank. Different color of fish robots are mimic the natural swim of fish. Unfortunately, in the underwater medium, the colors are modified by attenuation and difficult to identify the color for moving objects. We consider the fish motion as a moving object and coordinates are found at every instinct of the aquarium to detect the position of the fish robot using OpenCV color detection. In this paper, we proposed to identify the position of the fish robot by their color and use the position data to control the fish robot gathering in one point in the fish tank through serial communication using RF module. It was verified by the performance test of detecting the position of the fish robot.

Larval Anisakid Infections in Marine Fish from Three Sea Areas of the Republic of Korea

  • Cho, Shin-Hyeong;Lee, Sang-Eun;Park, Ok-Hee;Na, Byoung-Kuk;Sohn, Woon-Mok
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.4
    • /
    • pp.295-299
    • /
    • 2012
  • The present study was performed to determine the infection status of anisakid larvae in marine fish collected from 3 sea areas of the Republic of Korea. Total 86 marine fish (8 species) collected from the East Sea (Goseong-gun, Gangwon-do), 171 fish (10 species) from the South Sea (Sacheon-si, Gyeongsangnam-do), and 92 fish (7 species) from the Yellow Sea (Incheon Metropolitan City) were examined by both naked eyes and artificial digestion method. Among the total of 349 fish examined, 213 (61.0%) were infected with 8 species of anisakid larvae, i.e., Anisakis simplex, 6 types of Contracaecum spp., and Raphidascaris sp., and the mean larval density was 13.8 per infected fish. Anisakid larvae were detected in 45 fish (52.3%) from the East Sea, 131 fish (76.6%) from the South Sea, and 37 fish (40.2%) from the Yellow Sea. The average numbers of larvae detected were 4.0, 16.6, and 15.9, respectively. Anisakis simplex larvae were detected in 149 fish (42.7%), and the mean larval density was 9.0 per infected fish. They were found in 26 fish (30.2%) collected from the East Sea, 96 fish (56.1%) from the South Sea, and 27 fish (29.3%) from the Yellow Sea. The average numbers of larvae detected were 2.9, 10.3, and 10.5, respectively. Conclusively, the present study suggests that the infection rate and density of anisakid larvae are more or less higher in the fish from the South Sea than those from the East Sea or the Yellow Sea.

The Characteristics and Spatio-temporal Distribution of Fish Schools during Summer in the Marine Ranching Area (MRA) of Yeosu using Acoustic Data (음향 자료를 이용한 하계 여수 바다목장 해역에서 어군의 시·공간 분포와 특징)

  • Yoon, Eun-A;Hwang, Doo-Jin;Kim, Ho-Sang;Lee, Kyung-Seon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.283-291
    • /
    • 2014
  • This study assessed dominant fish species, and the characteristics and spatio-temporal distribution of fish schools using acoustic and catch data in the marine ranching area (MRA) of Yeosu in July and August 2013. Acoustic data were collected using a 200-kHz dual beam transducer, and catch data were analyzed through auction data generated by a set net installed in the MRA. More fish schools were detected by acoustic methods in July than in August. The temporal distribution of fish schools differed between July and August, but, many schools demonstrated a high mean volume scattering strength (SV) around artificial reefs. Additionally, the characteristics of fish schools detected by echograms and the species caught by set nets differed between July and August. The dominant fish species were Engraulis japonicus, Pampus argenteus, Scomberomorus niphonius, and Pampus echinogaster in July, and approximately 85% of the catch in August consisted of Scomberomorus niphonius. Therefore, hydro-acoustic tools are useful for estimating fish school characteristics in large areas over a short period. To determine species, it is important to conduct net sampling surveys during the acoustic surveys. However, if a database of fish school characteristics organized by species is constructed through continuous study, it could be possible to identify fish species through acoustic methods alone.

Molecular Analysis of Anisakis Type I Larvae in Marine Fish from Three Different Sea Areas in Korea

  • Sohn, Woon-Mok;Kang, Jung-Mi;Na, Byoung-Kuk
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.4
    • /
    • pp.383-389
    • /
    • 2014
  • Anisakiasis, a human infection of Anisakis L3 larvae, is one of the common foodborne parasitic diseases in Korea. Studies on the identification of anisakid larvae have been performed in the country, but most of them have been focused on morphological identification of the larvae. In this study, we analyzed the molecular characteristics of 174 Anisakis type I larvae collected from 10 species of fish caught in 3 different sea areas in Korea. PCR-RFLP and sequence analyses of rDNA ITS and mtDNA cox1 revealed that the larvae showed interesting distribution patterns depending on fish species and geographical locations. Anisakis pegreffii was predominant in fish from the Yellow Sea and the South Sea. Meanwhile, both A. pegreffii and A. simplex sensu stricto (A. simplex s.str.) larvae were identified in fish from the East Sea, depending on fish species infected. These results suggested that A. pegreffii was primarily distributed in a diverse species of fish in 3 sea areas around Korea, but A. simplex s.str. was dominantly identified in Oncorhynchus spp. in the East Sea.

Simulation and Three-dimensional Animation of Skipjack Behavior as Capture Process during Purse Seining

  • Kim, Yong-Hae;Park, Myeong-Chul;Ha, Suk-Wun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.113-123
    • /
    • 2008
  • We modeled fish school movements as a capture process in relation to the purse seine method using the three steps of the stimulus-response process (i.e., input stimuli, central decision-making and output reaction). Input stimuli of the model were categorized as either physical stimuli such as visual stimulus, sound stimulus, water flow, and weather or as biological stimuli such as species and size, swimming performance, sensual sensitivity, and presence of prey or predators. The output process determining the spatial orientation of the fish school for 3-D movements was based on swimming speed and angular change in the fish response, and these movements were animated as the relative geometry between the fish school and the purse seine. Simulations were carried out for skipjack tuna (Katsuwonus pelamis) schools reacting to a pelagic purse seine in the southwest Pacific Ocean. Simulation results showed that escape ratios varied from 20 to 70% by the relevant ranges in the stimulus-response thresholds, swimming speeds, and angular changes of fish schools were similar to those observed in the field. Therefore, with knowledge of relevant parameters, this model can be used to predict capture and escape probabilities of purse seine operations for different fish species or conditions.

Fractal Analyses of Simulated Fish School Movements and Video-Recorded Sardine Movements

  • Kim, Soo-Hyun;Seiji, Ishikawa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.105.6-105
    • /
    • 2001
  • Fish schools behave like a single organism and offer a considerable survival advantage. In our simulations, the fish school is well organized and behaves like a single creature depending solely on the interactions among individuals without having any director fish. This kind of system can be said as the typical one of "Complex Systems". We make clear the validity of fractal analyses to evaluate fish school movements through evaluation of both the simulated movements and the real sardine movements taken by video tape. The analyses showed that we need two kinds of fractal dimensions (D$_1$, D$_2$) to fit to the observations; the one(D$_1$) corresponds to smaller coarsening levels and D$_2$ does to larger coarsening levels. The double linear analyses in ...

  • PDF

A Study on the Estimation of Fish School Abundance Using Sonar Image (소너 화상을 이용한 어군량 추정에 관한 연구)

  • 이유원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.92-98
    • /
    • 2003
  • The quantification of fish school abundance was carried out by using luminance of pixel on scanning sonar image, and compared with the indices of fish school abundance e.g. school number, school area and weighted school area. The survey was carried out in Funka Bay off southern Hokkaido, Japan using research vessel Ushio-Maru during December 1999. A 180-degree scanning sonar with a frequency of 164kHz was used. The school number was counted both left and right 40-degree radial lines from the center of own vessel mark on a scanning image. The school area was measured approximately as an ellipse from the school length and width. The weighted school area was calculated by multiplying school area and average value of inner pixel luminance. A quantification of pixel luminance was also measured to integrate squared pixel luminance value on these lines. Fish school and school bottom were discriminated by the produced sonar echogram using pixel luminance value on these lines. The relationships between the quantified luminance value and other abundance indices such as school area and weighted school area revealed a good correlation. Therefore, the quantified luminance is a useful method in estimating fish school abundance in the acoustic survey using sonar.