• 제목/요약/키워드: Fish length dependence

검색결과 12건 처리시간 0.029초

70 및 120kHz에서 쥐노래미와 감성돔에 대한 음향 반사 강도의 체장 의존성 (Fish length dependence of target strength for black porgy and fat greenling at two frequencies of 70 and 120kHz)

  • 이대재
    • 수산해양기술연구
    • /
    • 제48권2호
    • /
    • pp.137-146
    • /
    • 2012
  • Black porgy and fat greenling are commercially important fish species due to the continuously increasing demand in Korea. When estimating acoustically the fish length by a fish sizing echo sounder, it is of crucial importance to know the target strength (TS) to length dependence. In relation to these needs, the target strength experiments for live fishes were conducted in an acrylic salt water tank using two split-beam echo sounders operating at 70 and 120kHz. The target strength under well-controlled laboratory conditions was simultaneously measured with the swimming movement by digital video recording (DVR) system and analyzed as a function of fish length (L) and frequency (or wavelength ${\lambda}$). Equations of the form TS-alog (L)+blog (1)+c were derived for their TS-length dependence. The best fit regression of TS on fork length for black porgy was TS=20.62 log (L, m)-0.62 log (${\lambda}$, m)-30.68 ($r^2$=0.77). The best fit regression of TS on fork length for fat greenling was TS=12.06 log (L, m)-5.85 log (${\lambda}$, m)-22.15 ($r^2$=0.44).

부산 용호만 인공어초 어장에서 어획된 돌돔, 성대 및 전어에 대한 음향반사강도의 체장 의존성 (Fish length dependence of target strength for striped beakperch, bluefin searobin and konoshiro gizzard shad caught in the artificial reef ground of Yongho Man, Busan)

  • 이대재
    • 수산해양기술연구
    • /
    • 제46권3호
    • /
    • pp.239-247
    • /
    • 2010
  • Species of fish such as striped beakperch, bluefin searobin and konoshiro gizzard shad are commercially very important due to their high demand in the Korean market. When estimating acoustically the abundance of stocks for these species, it is of crucial importance to know the target strength (TS) to the length dependence. In relation to these needs, the TS experiments were conducted on three different species in an acrylic salt water tank using two split-beam echo sounders of 70 and 120 kHz. The TS for these three species under the controlled condition was simultaneously measured with the swimming movement by a DVR system and analyzed as a function of fish length (L) and frequency (or wavelength $\lambda$). The equation of the form TS=a log (L)+b log ($\lambda$)+c was derived for their TS-length dependence. The best fit regression of TS on fork length for striped beakperch was estimated as TS=35.67 log (L, m) -15.67 log ($\lambda$, m) -46.69 ($r^2$=0.78). Furthermore, the best fit regression of TS on fork length for konoshiro gizzard shad was shown to be TS=25.85 log (L, m) -5.85 log ($\lambda$, m) -32.22 ($r^2$=0.51). The averaged TS for 12 bluefin searobins with a mean length of 24.36cm at 70 kHz was analyzed to be -41.55dB. In addition, the averaged tilt angle obtained simultaneously by a DVR system with TS measurements for 27 konoshiro gizzard shads swimming within an acrylic salt water tank was estimated at $-2.7^{\circ}$.

한국 연근해에서 어획된 주요 12어종의 75 kHz에 대한 음향 반사 강도의 체장 의존성 (Fish length dependence of acoustic target strength for 12 dominant fish species caught in the Korean waters at 75 kHz)

  • 이대재
    • 수산해양기술연구
    • /
    • 제41권4호
    • /
    • pp.296-305
    • /
    • 2005
  • Acoustic target strength (TS) of 12 commercially important fish species caught in the Korean waters had been investigated and their results were presented. Laboratory measurements of target strength on 12 dominant fish species were carried out at a frequencies of 75 kHz by single beam method under the controlled condition of the water tank with the 241 samples of dead and live fishes. The target strength pattern on individual fish of each species was measured as a function of tilt angle, ranging from $-45^{\circ}$ (head down aspect) to $45^{\circ}$ (head up aspect) in $0.2^{\circ}$ intervals, and the averaged target strength was estimated by assuming the tilt angle distribution as N ($-5.0^{\circ}$, $^15.0{\circ}$). The 75 to fish length relationship for each species was independently derived by a least - squares fitting procedure. Also, a linear regression analysis for all species was performed to reduce the data to a set of empirical equations showing the variation of target strength to fish length and fish species. An empirical model for fish target strength(TS, dB) averaged over the dorsal aspect of 158 fishes of 7 species and which spans the fish length(L, m) to wavelength(${\lambda}$, m) ratio between 6.2 and 21.3 was derived: TS: 27.03 Log(L)-7.7Log(${\kanbda}$)-17.21, ($r^2$=0.59).

70kHz 및 120kHz에 있어서 조피볼락, 불볼락에 대한 반사강도의 체장 의존성 (Fish length dependence of target strength for black rockfish, goldeye rockfish at 70kHz and 120kHz)

  • 문재호;이대재;신형일;이유원
    • 수산해양기술연구
    • /
    • 제42권1호
    • /
    • pp.30-37
    • /
    • 2006
  • Black rockfish and goldeye rockfish are commercially important fish species due to the increasing demand in Korea. When estimating the abundance of stocks for these species acoustically, it is of crucial importance to know the target strength(TS) to length dependence. In relation to these needs, TS measurement was conducted on black rockfish and goldeye rockfish in an acrylic salt water tank using 70kHz and 120kHz split beam echo sounders. The TS for these two species under the controlled condition was simultaneously measured with the swimming movement by DVR system and analyzed as a function of fish length(L). The results obtained are summarized as follows: The best fit regression of TS on fish length of black rockfish was TS=19.38 Log(L, cm)-70.46 ($r^2=0.71$) at 70kHz and TS=22.39 Log(L, cm)-70.40 ($r^2=0.64$) at 120kHz and in the standard form TS=20 Log(L, cm)-71.29 ($r^2 = 0.70$) at 70kHz and TS=20 Log(L, cm)-66.88 ($r^2=0.57$) at 120kHz. The best fit regression of TS on fish length of goldeye rockfish was TS=17.10 Log(L, cm)-68.28 ($r^2=0.37$) at 70kHz and TS=24.39 Log(L, cm)-73.74 ($r^2=0.59$) at 120kHz and in the standard form TS=20 Log(L, cm)-72.03 ($r^2=0.32$) at 70kHz and TS=20 Log(L, cm)-67.68 ($r^2=0.64$) at 120kHz. An empirical model for fish TS(dB) averaged over the dorsal aspect of 115 fishes of black rockfish and goldeye rockfish and which spans the fish length(L, m) to wavelength($\lambda$, m) ratio between 8 and 30 was derived : TS=34.12 Log(L)-14.12 Log($\lambda$)-23.83, ($r^2=0.90$).

어류 체장의 자동 식별을 위한 어종별, 체장별 및 주파수별 음향 반사 강도의 데이터 뱅크 구축 (Construction of a Data Bank for Acoustic Target Strength with Fish Species, Length and Acoustic Frequency for Measuring Fish Size Distribution)

  • 이대재;신형일
    • 한국수산과학회지
    • /
    • 제38권4호
    • /
    • pp.265-275
    • /
    • 2005
  • A prerequisite for deriving the abundance estimates from acoustic surveys for commercially important fish species is the identification of target strength measurements for selected fish species. In relation to these needs, the goal of this study was to construct a data bank for converting the acoustic measurements of target strength to biological estimates of fish length and to simultaneously obtain the target strength-fish length relationship. Laboratory measurements of target strength on 15 commercially important fish species were carried out at five frequencies of 50, 70, 75, 120 and 200 kHz by single and split beam methods under the controlled conditions of the fresh and the sea water tanks with the 389 samples of dead and live fishes. The target strength pattern on individual fish of each species was measured as a function of tilt angle, ranging from $-45^{\circ}$ (head down aspect) to $+45^{\circ}$ (head up aspect) in $0.2^{\circ}$ intervals, and the averaged target strength was estimated by assuming the tilt angle distribution as N $(-5.0^{\circ},\;15.0^{\circ})$. The TS to fish length relationship for each species was independently derived by a least-squares fitting procedure. Also, a linear regression analysis for all species was performed to reduce the data to a set of empirical equations showing the variation of target strength to a fish length, wavelength and fish species. For four of the frequencies (50, 75, 120 and 200 kHz), an empirical model for fish target strength (TS, dB) averaged over the dorsal sapect of 602 fishes of 10 species and which spans the fish length (L, m) to wavelength (\Lambda,\;m)$ ratio between 5 and 73 was derived: $TS=19.44\;Log(L)+0.56\;Log(\Lambda)-30.9,\;(r^2=0.53)$.

The Frequency and Length Dependence of the Target Strength of the Largehead Hairtail (Trichiurus lepturus) in Korean Waters

  • HwangBo, Young;Lee, Dae-Jae;Lee, Yoo-Won;Lee, Kyoung-Hoon
    • Fisheries and Aquatic Sciences
    • /
    • 제12권2호
    • /
    • pp.152-161
    • /
    • 2009
  • The largehead hairtail (Trichiurus lepturus) is one of the most common fisheries stocks in the East China Sea and the Yellow Sea. The species is caught using a variety of fishing tools, such as a stow net or a long line, as well as jigging and trawling. Scientific investigations have been conducted throughout the world to enable evidence-based estimations for the management and protection of the main fisheries biomass. For example, inshore and offshore hydro acoustic surveys are performed annually using bottom- and mid-water trawls around the Korean Peninsula. However, to date, no acoustic survey has been conducted to estimate fish size distribution, which is necessary to construct a data bank of target strength (TS) relative to fish species, length (L), and frequency. This study describes the frequency and length dependence of TS among fishes in Korean waters for the purpose of constructing such a TS data bank. TS measurements of the largehead hairtail were carried out in a water tank (L 5 m$\times$width 6 m$\times$ height 5 m) at frequencies of 50, 75, 120, and 200 kHz, using a tethering method. The average TS patterns were measured as a function of tilt angle, ranging from $-45^{\circ}$ (head down) to $+45^{\circ}$ (head up) every $0.2^{\circ}$. The length conversion constant ($b_{20}$) was estimated under the assumption that TS is proportional to the square of the length. In addition, in situ TS measurements on live largehead hairtails were performed using a split beam echo sounder.

부세에 대한 음향반사강도의 체장 의존성 (Fish length dependance of acoustic target strength for large yellow croaker)

  • 강희영;이대재
    • 수산해양기술연구
    • /
    • 제39권3호
    • /
    • pp.239-248
    • /
    • 2003
  • 우리나라 주변해역에 서식하는 주요 어종의 체장식별에 필요한 음향반사강도의 data bank를 구축하기 위한 연구의 일환으로 대형음향수조에서 부세의 체장에 따른 음향반사강도를 측정하고, 그 반사강도의 체장 의존성 및 KRM 산란모텔에 의한 이론 반사강도와 측정치를 비교, 분석한 결과를 요약하면 다음과 같다. 1. 체장의 범위가 21.0-32.5 cm인, 총 13마리의 부세를 대상으로 구한 평균반사강도패턴에서 최대 반사강도는 tilt angle이 -13.35$^{\circ}$ 인 입사방향에서 나타났고, 이 때의 반사강도는 -35.13 ㏈ 이었다. 2. 부세의 체장 (fork length, cm)과 평균반사강도의 사이에는 다음의 회귀직선식이 성립하였다. TS=23. 76log(L) -73.45(r=0.47) TS=20log(L) -67.35이 결과로부터 부세의 반사강도는 체장의 2.376승에 비례하는 경향을 나타내었고, 체장변환계수는 체장의 2승에 근사시켜 구한 값 보다 6.1 ㏈ 더 낮게 나타났다. 이들의 결과는 향후 체장어군탐지기의 체장변환계수의 값으로서 활용될 것으로 판단된다. 3. 평균체장은 25.59 cm인 총 13마리의 부세에 대한 반사강도의 빈도분포로부터 구한 반사강도는 -41.23 ㏈이었고, 이 값으로부터 구한 체장변환계수는 -69.72 ㏈이었다. 4. KRM model에 의한 부세의 이론반사강도는 L/λ 비가 15보다 작은 영역에서는 파동상의 변화를 나타내면서 증가하는 경향을 나타내었고, 15보다 큰 영역에서는 매우 완만하게 증가하는 경향을 나타내었다. 5. 부세의 평균반사강도의 측정치는 KRM 산란모델에 의한 예측치보다 전반적으로 낮은 경향을 나타내었고, 보다 정량적인 분석을 위해서는 광범위한 주파수 범위에 대한 실험이 필요하다고 판단된다.

냉동 수산물의 저장 온도 관리를 위한 Time-temperature Indicator와 비전 기반 Indicator 분석 프로그램 개발 (A Time-temperature Indicator for A Vision Based-Detection System for Managing the Storage Temperature of Frozen Fish Products)

  • 장명기;홍창욱;최재혁;김꽃봉우리;최정욱;남택정;안동현
    • 한국수산과학회지
    • /
    • 제51권1호
    • /
    • pp.91-94
    • /
    • 2018
  • We develop a time-temperature indicator (TTI) that can determine whether thawing of fish and other fishery products has occurred during frozen storage. A polypropylene tube with an internal diameter of 3 mm was prepared and cut to a length of 14 to 20 mm. One end of the tube was thermally sealed and 0.1% acetic acid was injected into the other end; the tube was then frozen at $20^{\circ}C$. Then the open side of the frozen tube was blocked by sinking the tube into a 10% gelatin solution. The tube was attached to a polyvinyl packaging bag along blue litmus paper and the bag was put into a freezer at $-20^{\circ}C$. After freezing, the bag was removed to an ambient temperature of $20^{\circ}C$, and the time dependence of the color change of the litmus paper was observed. The color changed from blue to red, with the length of the red region increasing with time. Our TTI can be used as a part of a visible detection system and the detection program can conduct the elapsed time analysis on the length of the red region of the litmus paper indicating the degree of thawing. Thus, the TTI is a useful tool in the temperature management of frozen fish and fishery products.

현수법과 모델을 이용한 조피볼락의 유영자세각과 체장에 따른 음향 후방산란강도 (Target strength estimation by tilt angle and size dependence of rockfish (Sebastes schlegeli) using ex-situ and acoustic scattering model)

  • 윤은아;김기선;이인태;조현정;이경훈
    • 수산해양기술연구
    • /
    • 제53권2호
    • /
    • pp.152-159
    • /
    • 2017
  • Rockfish was a commercially important fish specie in marine ranching areas in Korea. To estimate density and biomass of rockfish using acoustic method, target strength (TS) information is required on the species. This study measured TS dependence on tilt angle and size on 14 live rockfish individuals at 38, 70, and, 120 kHz by ex-situ measurement (tethered method) and acoustic scattering model (Krichhoff ray mode, KRM). The swimbladdered angle ranged from 18 to $30^{\circ}$ ($mean{\pm}s.d.=26{\pm}4^{\circ}$). The mean TS for all individuals was highest -35.9 dB of tilt angle $-17^{\circ}$ at 38 kHz, -35.4 dB of tilt angle $-25^{\circ}$ at 70 kHz, and -34.9 dB of tilt angle $-22^{\circ}$ at 120 kHz. The ex-situ TS-total length (TL, cm) relationships were $TS_{38kHz}=20log_{10}(TL)-67.1$, $TS_{70kHz}=20log_{10}(TL)-68.6$, and $TS_{120kHz}=20log_{10}(TL)-69.9$, respectively. The model TS-total length (TL, cm) relationships were $TS_{38kHz}=20log_{10}(TL)-66.4$, $TS_{70kHz}=20log_{10}(TL)-67.0$, $TS_{120kHz}=20log_{10}(TL)-67.0$. The two measurements between the ex-situ TS and KRM model for TS-tilt angle and fish size were found to be significantly correlated.

어군탐지기에 의한 어군량 추정에 관한 기초적 연구 ( 2 ) - 어군의 분포밀도와 초음파산란강도의 관계 - (Studies on Estimation of Fish Abundance Using an Echo Sounder ( 2 ) - The Relationship between Acoustic Backscattering Strength and Distribution Density of Fish in a Net Cage-)

  • 이대재
    • 수산해양기술연구
    • /
    • 제27권1호
    • /
    • pp.13-20
    • /
    • 1991
  • 어군의 분포밀도와 초음파산란강도의 관계를 검토하기 위하여, 50kHz의 주파수에서 net cage (농망)에 분포밀도가 기지인 어군을 수용하고, 어군밀도의 변화에 기인하는 echo energy의 변동을 고찰하고, 또 cage 실험에 의해 추정한 어체의 평균적인 반사강도와 개개의 어체를 대상으로 구한 평균반사강도를 상호 비교, 검토한 결과를 요약하면 다음과 같다. 1. cage 실험에 의한 붕어의 평균반사강도는 -41.9dB로서, 이 값은 현장에서 개개의 붕어(마취어, 평균체장 19.1cm)를 대상으로 측정한 평균반사강도 -42.6dB보다 0.7dB 더 컸다. 2. cage내에 수용한 어군의 분포밀도가 증가함에 따라, 어군에 의한 평균체적산란강도는 직선적으로 증가하는 경향을 나타내었다. 즉, 어군밀도가 7, 13, 20, 26, 39, 52, 66 마리/m 상(3)였을 때, 각각의 어군에 의한 평균체적산란강도는 -33.0, -28.9, -27.6, -24.3, -25.1, -23.6, -22.1dB이었다. 3. 어군밀도 $\rho(마리/m$ 상(3))와 평균체적산란강도 (dB)와의 사이에는 다음의 관계식이 성립하였다. =-41.9+11.0 $Log(\rho),$ r=0.97 이 식에 회귀직선의 기울기 11은 이론적인 값 10에 거의 근사하였다.

  • PDF