• Title/Summary/Keyword: Fish farming

Search Result 174, Processing Time 0.027 seconds

Withdrawal Time of Enrofloxacin in Oliver Flounder (Paralichthys olivaceus) after Oral Administration (양식 넙치 (Paralichthys olivaceus)의 Enrofloxacin 휴약기간)

  • Kim Poong-Ho;Lee Hee-Jung;Jo Mi-Ra;Lee Tae-Seek;Ha Jin-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.2
    • /
    • pp.72-77
    • /
    • 2006
  • Enrofloxacin (ENRO) is one of the most commonly used fluoroquinolones for treating bacterial disease in olive flounder (Paralichthys olivaceus) farming, but its withdrawal time for industrial-scale farming has not been well established. Withdrawal times of ENRO following oral administration were evaluated in olive flounder under field conditions. Fish were held in an inland fish tank and fed a commercial mediated diet containing 5 mg/kg of ENRO for 9 days. Seven fish per sampling point were examined during and after treatment. ENRO and its major metabolite, ciprofloxacin (CIP), were analyzed using high-performance liquid chromatography with a fluorescence detector. The concentration of ENRO and CIP in muscle increased during the medication period, and then decreased rapidly The sum of ENRO and CIP concentration in olive flounder peaked on day 6, with a maximal concentration in muscle of 4.30 mg/kg. ENRO residues were eliminated rapidly; at 10 days post treatment, the level in muscle was 0.10 mg/kg, but it took about 50 days to be reduced to below 0.1 mg/kg. After 60 days, the residual concentration was below 0.1 mg/kg in all samples. The level of ENRO accumulation at the beginning of oral administration was variable, according to the farming conditions, but the overall exhaustion time was almost the same. We concluded that an adequate withdrawal period of enrofloxacin is 60 days in the case of oral administration.

Current Status and Consideration of Breeding Research on Olive Flounder in Korea (우리나라 넙치 육종연구에 관한 현황 및 고찰)

  • Jong Won Park;Jeong Ho Lee;Hyun Chul Kim
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.3
    • /
    • pp.35-46
    • /
    • 2023
  • It was in the 1982 that artificial seed production research for olive flounder (Paralichthys olivaceus) farming was first conducted in Korea (Currently, National Institute of Fisheries Science, Fish Breeding Research Center). In 1985, fertilized eggs were obtained from natural olive flounder adapted to land tanks, and artificial seed production technology was established and fertilized eggs were distributed. In the late 1980s, halibut aquaculture began to prosper in land-based tank farming in Jeju Island and Busan's Gijang region, where water temperatures are relatively high in winter. Currently, aquaculture is being carried out all over the country, centering on Jeju Island and Wando, Jeollanam-do. However, olive flounder farming, which started with a small group in the 1980s, reduced genetic diversity through inbreeding over generations, resulting in side effects such as slow growth, reduced resistance to disease and environmental conditions. In order to solve these genetic problems of farmed olive flounder in Korea, the Fish Breeding Research Center of the National Institute of Fisheries Science introduced a wild-caught parent fish group to the existing aquaculture group from 2003 to 2004. Genetic diversity was secured and KingNupchi with fast growth and improved body shape was developed. In this study, the current status of breeding technology development of olive flounder, a major aquaculture breed in Korea, is reviewed and future research directions are suggested.

Egg Quality and Amino Acid Composition of Fertilized Eggs of Sevenband Grouper, Epinephelus septemfasciatus per Farming Condition (사육조건에 따른 능성어, Epinephelus septemfasciatus, 수정란의 난질 및 아미노산 조성)

  • Kim, Kyong Min;Cho, Jae Kwon;Park, Jong Youn;Son, Maeng Hyun;Park, Jae Min;Han, Kyeong Ho;Hong, Chang Gi
    • Korean Journal of Ichthyology
    • /
    • v.28 no.4
    • /
    • pp.229-238
    • /
    • 2016
  • This study aims to investigate egg quality and amino acid composition of buoyant and non-buoyant eggs and evaluate egg quality of sevenband grouper, Epinephelus septemfasciatus. Amino acid analysis of eggs was conducted to investigate what elements were necessary for the survival and good quality of egg depending on farming condition and different diet. We analyzed amino acid from buoyant eggs and non-buoyant eggs, farming conditions (tank and sea cage), and different dietary conditions (formulated feed, formulated feed+raw fish-based moist pellets, and raw fish-based moist pellets). Egg quality was the best in a sea cage and when raw fish-based moist pellets (MP) were fed. In addition, egg quality with formulated and MP was better than that with formulated feed. As a result of amino acid analysis of eggs, buoyant eggs were containing more free amino acid than non-buoyant eggs. Also, eggs with MP were containing more free amino acid than those with formulated feed and MP. Eggs with mixed formulated feed and MP were containing more free amino acid than formulated feed. In conclusion, amino acid was helpful to improve egg quality, and egg quality can be controlled by farming conditions and feed.

Effect of Soil Microbial Diversity in Paddy Wetland under Organic Rice-Fish Mixed Farming System (유기농 복합생태 논습지의 토양 미생물 다양성 증진 효과)

  • Han, Yangsoo;Park, Choongbae;Cho, Jung-Lai;Park, Sang-Gu;Kong, Min-Jae;Nam, Hong-Shik;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.69-82
    • /
    • 2022
  • In this study, we investigated the bacterial community structure in organic rice-fish mixed farming paddy soil by using high-throughput sequencing technology. The results showed that compared with the organic rice cultivated soil, the content of AP (available phosphorus) increased by 310.23 % and the content of OM (organic matter) increased by 168.83%. The most abundant phyla in paddy soils were Proteobacteria, Bacteriodetes, and Chloroflexi, whose relative abundance was above 47.83%. Among the dominant genera, the relative abundance of Limisphaera in paddy soils was observed. Alpha diversity indicated that the bacterial diversity of paddy soils was similar among each other. The bacterial community structure was affected by the relative abundance of bacteria, not the species of bacteria. Principal Coordinated Analysis (PCoA) results showed that the bacterial communities in organic rice-fish mixed farming soil and organic paddy soil were correlated to each other; the bacterial community structure was distinctively grouped by four different systems (paddy soil under organic rice-fish mixed farming system, organic rice cultivation, and conventional rice cultivation), where the first two are closely related to each other than the third one. The results provide basal support for organic agri-cultivation while improving an ecological value at the same time.

Edible vaccine for aquacultured fish: present and prospect (어류 경구백신 현황과 전망)

  • Park, Eun-Joon;Kim, Mi-Na;Park, Ju-Young;Cha, Jae-Ho;Chung, Hwa-Jee
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.269-274
    • /
    • 2010
  • As the capture fishing industry has declined, the aquaculture industry has become an important source of seafood. With this tendency all fish farming will be performed by large-scale farms where the fish are cultivated in much high density and as a result the incidence of infectious diseases increases. Therefore, vaccination has become an increasingly important part of aquaculture as a cost effective method of controlling various diseases. The early fish vaccines were the formalin inactivated bacteria or virus cultures, which were administered by either immersion or injection. Recombinant DNA biotechnology allowed us to develop orally administrated DNA and recombinant vaccines. In terms of the manufacturing process and cost, Lemna and Spirodela is the most efficient and reliable plant expression system for the production of edible vaccine.

Recent Advances in Biotechnology Applications to Aquaculture

  • Lakra, W.S.;Ayyappan, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.455-462
    • /
    • 2003
  • Biotechnological research and development are moving at a very fast rate. The subject has assumed greatest importance in recent years in the development of agriculture and human health. The science of biotechnology has endowed us with new tools and tremendous power to create novel genes and genotypes of plants, animals and fish. The application of biotechnology in the fisheries sector is a relatively recent practice. Nevertheless, it is a promising area to enhance fish production. The increased application of biotechnological tools can certainly revolutionise our fish farming besides its role in biodiversity conservation. The paper briefly reports the current progress and thrust areas in the use of synthetic hormones in fish breeding, production of monosex, uniparental and polyploid individuals, molecular biology and transgenesis, biotechnology in aquaculture nutrition and health management, gene banking and the marine natural products.

An Implementation of System for Control of Dissolved Oxygen and Temperature in the pools of Smart Fish Farm (스마트 양식장 수조 내 용존 산소 및 온도 제어를 위한 시스템 구현)

  • Jeon, Joo-Hyeon;Lee, Yoon-Ho;Lee, Na-Eun;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.299-305
    • /
    • 2021
  • Dissolved oxygen, pH, and temperature are the most important factors for fish farming because they affect fish growth and mass mortality of the fish. Therefore, fish farm workers must always check all pools on the farm, but this is very difficult in reality. That's why we developed a control system for smart fish farms. This system includes a gateway, sensor gatherers, and a PC program using LabVIEW. One sensor gatherer can cover up to four pools. The sensor gatherers are connected to the gateway in the form of a bus. For the gateway, the ATmega2560 is used as the main processor for communication and the STM32F429 is used as a sub-processor for displaying LCD. For the sensor gatherer, ATmega2560 is used as the main processor for communication. MQTT (Message Queuing Telemetry Transport), RS-485, and Zigbee are used as the communication protocols in the control system. The users can control the temperature and the dissolved oxygen using the PC program. The commands are transferred from the PC program to the gateway through the MQTT protocol. When the gateway gets the commands, it transfers the commands to the appropriate sensor gatherer through RS-485 and Zigbee.

Morphometric and genetic diversity of Rasbora several species from farmed and wild stocks

  • Bambang Retnoaji;Boby Muslimin;Arif Wibowo;Ike Trismawanti
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.9
    • /
    • pp.569-581
    • /
    • 2023
  • The morphology and genetic identification of Rasbora lateristriata and Rasbora argyrotaenia between cultivated and wild populations has never been reported. This study compares morphology and cytochrome c oxidase (COI) genes between farmed and wild stock Rasbora spp. in Java and Sumatra island, Indonesia. We analyzed the truss network measurement (TNM) characters of 80 fish using discriminant function analysis statistical tests. DNA was extracted from muscle tissue of 24 fish specimens, which was then followed by polymerase chain reaction, sequencing, phylogenetic analysis, fixation index analysis, and statistical analysis of haplotype networks. Basic Local Alignment Search Tool analysis validated the following species: R. lateristriata and R. argyrotaenia from farming (Jogjakarta); Rasbora agryotaenia (Purworejo), R. lateristriata (Purworejo and Malang), Rasbora dusonensis (Palembang), and Rasbora einthovenii (Riau) from natural resources. Based on TNM characters, Rasbora spp. were divided into four groups, referring to four distinct characters in the middle of the body. The phylogenetic tree is divided into five clades. The genetic distance between R. argyrotaenia (Jogjakarta) and R. lateristriata (Malang) populations (0.66) was significantly different (p < 0.05). R. lateristriata (Purworejo) has the highest nucleotide diversity (0.43). R. argyrotaenia from Jogjakarta and Purworejo shared the same haplotype. The pattern of gene flow among them results from the two populations' close geographic proximity and environmental effects. R. argyrotaenia had low genetic diversity, therefore, increasing heterozygosity in cultivated populations is necessary to avoid inbreeding. Otherwise, R. lateristriata (Purworejo) had a greater gene variety that could be used to develop breeding. In conclusion, the middle body parts are a distinguishing morphometric character of Rasbora spp., and the COI gene is more heterozygous in the wild population than in farmed fish, therefore, enrichment of genetic variation is required for sustainable Rasbora fish farming.

PredFeed Net: GRU-based feed ration prediction model for automation of feed rationing (PredFeed Net: 먹이 배급의 자동화를 위한 GRU 기반 먹이 배급량 예측 모델)

  • Kyu-jeong Sim;Su-rak Son;Yi-na Jeong
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.49-55
    • /
    • 2024
  • This paper proposes PredFeed Net, a neural network model that mimics the food distribution of fish farming experts. Unlike existing food distribution automation systems, PredFeed Net predicts food distribution by learning the food distribution patterns of experts. This has the advantage of being able to learn using only existing environmental data and food distribution records from food distribution experts, without the need to experiment by changing food distribution variables according to the environment in an actual aquarium. After completing training, PredFeed Net predicts the next food ration based on the current environment or fish condition. Prediction of feed ration is a necessary element for automating feed ration, and feed ration automation contributes to the development of modern fish farming such as smart aquaculture and aquaponics systems.

Fish farm monitoring report for outdoor aquaculture of far eastern catfish Silurus asotus in Korea

  • Hyeongsu Kim;Jongsung Park;Bokki Choi
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.660-668
    • /
    • 2023
  • This study aimed to investigate the growth performance of far eastern catfish (Silurus asotus) on outdoor fish farms to obtain basic data for the domestic eastern catfish aquaculture industry. An outdoor fish farm was directly monitored from June 2018 to October 2019 to determine the farming conditions, growth performance, and water quality. The growth performance in 2017 was analyzed using data from the same fish farm. Three years of monitoring showed that the fish farm required approximately 5-6 months between stocking, harvesting, and selling an S. asotus batch. The growth parameters, namely, the weight gain rate (WGR), specific growth rate (SGR) for culture periods, SGR for feeding periods, and feed coefficient rate (FCR), were 4,664.7%, 1.27%, 2.43%, and 1.25 in 2017; 6,452.0%, 1.52%, 2.79%, and 1.42 in 2018; and 3,270.0%, 1.11%, 2.12%, and 1.38 in 2019, respectively. Moreover, the WGR was two-fold higher in 2018 than 2019, whereas the FCR was more effective in 2019 than 2018, presumably because of the stocking density. No mass mortality was observed during the water quality analysis. The results of this study provide basic data for the development of the catfish industry.