• 제목/요약/키워드: First-principles simulation

검색결과 60건 처리시간 0.033초

First-principles Calculations of the Phonon Transport in Carbon Atomic Chains Based on Atomistic Green's Function Formalism

  • Kim, Hu Sung;Park, Min Kyu;Kim, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.425.1-425.1
    • /
    • 2014
  • Thermal transport in nanomaterials is not only scientifically interesting but also technological important for various future electronic, bio, and energy device applications. Among the various computation approaches to investigate lattice thermal transport phenomena in nanoscale, the atomistic nonequilibrium Green's function approach based on first-principles density functional theory calculations appeared as a promising method given the continued miniaturization of devices and the difficulty of developing classical force constants for novel nanoscale interfaces. Among the nanometerials, carbon atomic chains, namely the cumulene (all-doulble bonds, ${\cdots}C=C=C=C{\cdots}$) and polyyne (alternation of single and triple bonds, ${\cdots}C{\equiv}C-C{\equiv}C{\cdots}$) can be considered as the extream cases of interconnction materials for nanodevices. After the discovery and realization of carbon atomic chains, their electronic transport properties have been widely studied. For the thermal transport properties, however, there have been few literatures for this simple linear chain system. In this work, we first report on the development of a non-equilibrium Green's function theory-based computational tool for atomistic thermal transport calculations of nanojunctions. Using the developed tool, we investigated phonon dispersion and transmission properties of polyethylene (${\cdots}CH2-CH2-CH2-CH2{\cdots}$) and polyene (${\cdots}CH-CH-CH-CH{\cdots}$) structures as well as the cumulene and polyyne. The resulting phonon dispersion from polyethylene and polyene showed agreement with previous results. Compared to the cumulene, the gap was found near the ${\Gamma}$ point of the phonon dispersion of polyyne as the prediction of Peierls distortion, and this feature was reflected in the phonon transmission of polyyne. We also investigated the range of interatomic force interactions with increase in the size of the simulation system to check the convergence criteria. Compared to polyethylene and polyene, polyyne and cumulene showed spatially long-ranged force interactions. This is reflected on the differences in phonon transport caused by the delicate differences in electronic structure.

  • PDF

Development of AC/DC Hybrid Simulation for Operator Training Simulator in Railway System

  • Cho, Yoon-Sung;Lee, Hansang;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.52-59
    • /
    • 2014
  • Operator training simulator, within a training environment designed to understand the principles and behavior of the railway system with respect to operator's entries and predefined scenario, can provide a very strong benefit in facilitating operators' handling undesired operations. This simulator consists of computer system and applications, and the purpose of applications is to generate the power and voltage and analyze the AC substation and DC railway, respectively. This paper describes a novel approach to the new techniques for AC/DC hybrid simulation for the operator training simulator in the railway system. We first propose the structure the database of railway system. Then, topology processing and power flow using a linked-list method based on the proposed database, full or decoupled newton-rapshon methods are presented. Finally, the interface between the analysis for AC substation using a newton-rapshon method and the analysis for DC railway system using a time-interval power flow method is described. We have verified and tested the developed algorithm through the extensive testing for the proposed test system. To demonstrate the validity of the developed algorithm, comparative simulations between the proposed algorithm and PSS/E for the test system were conducted.

Mud handling system 내 cyclone separator의 집진효율 추정을 위한 공기-분체의 CFD 시뮬레이션 (CFD Simulation of Air-particle Flow for Predicting the Collection Efficiency of a Cyclone Separator in Mud Handling System)

  • 전규목;박종천
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.42-49
    • /
    • 2019
  • Drilling mud was used once in the step of separating the gas and powder they were transported to a surge tank. At that time, the fine powder, such as dust that is not separated from the gas, is included in the gas that was separated from the mud. The fine particles of the powder are collected to increase the density of the powder and prevent air pollution. To remove particles from air or another gas, a cyclone-type separator generally can be used with the principles of vortex separation without using a filter system. In this study, we conducted numerical simulations of air-particle flow consisting of two components in a cyclone separator in a mud handling system to investigate the characteristics of turbulent vortical flow and to evaluate the collection efficiency using the commercial software, STAR-CCM+. First, the single-phase air flow was simulated and validated through the comparison with experiments (Boysan et al., 1983) and other CFD simulation results (Slack et al., 2000). Then, based on one-way coupling simulation for air and powder particles, the multi-phase flow was simulated, and the collection efficiency for various sizes of particles was compared with the experimental and theoretical results.

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF

Makeup Design and the Application of 3D Facial Avatar Makeup Simulation

  • Barng, Keejung
    • 패션비즈니스
    • /
    • 제18권6호
    • /
    • pp.57-66
    • /
    • 2014
  • The purpose of this study is to design appropriate digital tools for the production of makeup designs. In this study, we used a three-dimensional facial avatar simulation program developed by the Electronics and Telecommunications Research. This study is based on the creation of three-dimensional CG digital art of facial avatar makeup, produced by using simulation technology. First, the actual application and the tools for digital-optimization and media features were created, leading to the research and cleanup. Second, the theoretical background was applied to the formative elements of oriental colors in the designing process. Makeup design elements include point, line, surface, color, and texture. In this study, effective makeup design was interpreted to be based on the representation of particular elements, notably the design principles of balance, proportion, rhythm, repetition, emphasis, contrast, harmony, and unity. In Asia, design is based on the visibility of red, blue, black, yellow, and white-the colors of the five elements-and the use of points, lines, and shapes. This study was recently under scrutiny in relations to digital simulation and various three-dimensional designs, in terms of how to take advantage of a wide range of applications, and how to apply the findings through media and the dissemination of basic research. This study applies the characteristics of the limited existing stereoscopic three-dimensional and digital simulation programs in order to take advantage of the empirical research, providing a basis to implement this research in a meaningful way. A follow-up study is needed to extend these findings and theoretical foundation through continuous observation and in-depth technical development and research.

High Efficiency Soft-Switching Boost Converter Using a Single Switch

  • Kim, Jun-Ho;Jung, Doo-Yong;Park, Sang-Hoon;Won, Chung-Yuen;Jung, Yong-Chae;Lee, Su-Won
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.929-939
    • /
    • 2009
  • This paper presents a new soft-switching boost converter based on the LC resonance and passive clamping technique without additional active switches. The circuit achieves high efficiency and low voltage stress by adopting a soft switching method using LC resonance. This paper gives a mathematical analysis of each mode and a detailed design procedure of the proposed boost converter. First of all, the operational principles are verified through simulation results. Then, according to the design procedure, we designed and built a 1.5[kW] prototype soft switching boost converter. Through the experimental results, we demonstrated the validity and usefulness of the proposed boost converter.

전기싸이클론의 집진 성능 해석 (Numerical analysis of collection performance for electro-cyclone)

  • 김완수;강윤호;이진원
    • 설비공학논문집
    • /
    • 제10권6호
    • /
    • pp.702-713
    • /
    • 1998
  • The characteristics of flow and particle collection for an electrocyclone with a central wire inside a high efficiency Stairmand cyclone was numerically analysed. Turbulent flow field was modeled by the Reynolds stress model and solved with an FVM code FLUENT. Particle motion and in-situ charging were simultaneously solved by a Lagrangian integration with time. The flow field obtained was in good agreement with experiments in the outer region. The characteristics of collection enhancement due to electric force were well manifested and well explained based on first principles. The effect of the in-situ charging process was very similar to the case of a simplified assumption of saturated charging, and the effect of the hopper was proved negligible.

  • PDF

Kinetic Monte Carlo Simulations for Defects Diffusion in Ion-implanted Crystalline

  • Jihyun Seo;Hwang, Ok-Chi;Ohseob Kwon;Kim, Kidong;Taeyoung Won
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.731-734
    • /
    • 2003
  • An atomistic process modeling, Kinetic Monte Carlo simulation, has the advantage of being both conceptually simple and extremely powerful. Instead of diffusion equations, it is based on the definitions of the interactions between individual atoms and defects. Those interactions can be derived either directly from molecular dynamics, first principles calculations, or from experiment. In this paper, as a simple illustration of the kinetic Monte Carlo we simulate defects (self-interstitials and vacancies) diffusion after ion implantation in Si crystalline.

  • PDF

고순도 나노분말 제조기술 개발에 관한 연구 (A Study on the Manufacturing Technology Development of High Purity NanoPowder)

  • 박영문;차용훈;성백섭;윤길하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1178-1181
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to learn to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF

초정밀 나노 분급기 개발에 관한 연구 (A Study on the Development of the Superprecision Nano Separator)

  • 성백섭;윤길하;차용훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.27-32
    • /
    • 2003
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures. The essence of nanotechnology is the ability to work at these levels to generate larger structures with fundamentally new molecular organization. These nanostructures, made with building blocks understood from first principles, are the smallest human-made objects, and they exhibit novel physical, chemical, and biological properties and phenomena. The aim of nanotechnology is to loam to exploit these properties and efficiently manufacture and employ the structures. Control of matter on the nanoscale already plays an important role in scientific disciplines as diverse as physics, chemistry, materials science, biology, medicine, engineering, and computer simulation. This paper describes the superprecision nano separator to productive particle size of nano powder. this separator system is very important in the industrial area for other high technology parts.

  • PDF