• Title/Summary/Keyword: First-order moment

Search Result 337, Processing Time 0.032 seconds

A Study for Robustness of Objective Function and Constraints in Robust Design Optimization

  • Lee Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1662-1669
    • /
    • 2006
  • Since randomness and uncertainties of design parameters are inherent, the robust design has gained an ever increasing importance in mechanical engineering. The robustness is assessed by the measure of performance variability around mean value, which is called as standard deviation. Hence, constraints in robust optimization problem can be approached as probability constraints in reliability based optimization. Then, the FOSM (first order second moment) method or the AFOSM (advanced first order second moment) method can be used to calculate the mean values and the standard deviations of functions describing constraints and object. Among two methods, AFOSM method has some advantage over FOSM method in evaluation of probability. Nevertheless, it is difficult to obtain the mean value and the standard deviation of objective function using AFOSM method, because it requires that the mean value of function is always positive. This paper presented a special technique to overcome this weakness of AFOSM method. The mean value and the standard deviation of objective function by the proposed method are reliable as shown in examples compared with results by FOSM method.

Vibration Control of a Single-Link Flexible Manipulator Using Reaction Moment Estimator (반력모멘트 추정기를 이용한 단일 링크 유연 조작기의 진동제어)

  • Shin, Hocheol;Han, Sangsoo;Kim, Seungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.169-175
    • /
    • 2005
  • In this paper, a novel vibration control scheme for a single-link flexible manipulator system without using a vibration feedback sensor is proposed. In order to achieve the vibration information of the flexible link, a reaction moment estimator based on the dynamic characteristics of the flexible manipulator is proposed. While the manipulator is maneuvering the reaction moment is reciprocally acting on the flexible link and the hub inertia due to the vibration of the link. A sliding mode controller based on the equivalent rigid body dynamics corresponding to the proposed flexible manipulator is then augmented with the reaction moment estimator to realize a decentralized control system. The reaction moment estimator is implemented via the first order low pass filter. The performance of the proposed control scheme is verified by computer simulation and experiment.

Development of Load Factors-Based Analysis Model of Optimum Reliability (하중계수에 기초한 최적신뢰성의 해석모델 개발)

  • 이증반;신형우
    • Computational Structural Engineering
    • /
    • v.5 no.4
    • /
    • pp.113-124
    • /
    • 1992
  • This study proposes a Load Factors-based Analysis Model of Optimum Reliability for the High way bridge, which is most common type of structural design, and also proposes the theoretical bases of optimum nominal safety factors as well as optimum load and resistance factors based on the expected total cost minimization. Major 2nd moment reliability analysis and design theories including both MFOSM(Mean First Order 2nd Moment) Methods and AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Lind-Hasofer's approximate and an approximate Log-normal type reliability for mula are well suited for the proposed optimum reliability study.

  • PDF

Direct Numerical Simulation and Second-Order Conditional Moment Closure Modelling of a Turbulent Hydrocarbon Flame (난류 탄화수소화염의 직접수치해석 및 이차 조건모멘트닫힘 모델링)

  • Kim, Seung-Hyun;Huh, Kang Y.;Bilger, Robert W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.35-41
    • /
    • 2001
  • A second-order conditional moment closure(CMC) model is applied to the prediction of local extinction in a turbulent hydrocarbon diffusion flame and compared with direct numerical simulation(DNS) results for the flame. Combustion of a hydrocarbon fuel is described by a simple two-step mechanism. A second-order correction for conditional mean reaction rate terms is made by the assumed pdf method. The results show that the second-order closure is necessary for accurate prediction of intermediate species, while first-order CMC gives good predictions for fuel, oxidant, product and temperature. Conditional variances and covariances are well predicted during an extinction process while they are overpredicted during a reignition process.

  • PDF

Data Based Lower-Order Controller Design: Moment Matching Approach (데이터 기반 저차제어기 설계: 모멘트 정합 기법)

  • Kim, Young Chol;Jin, Lihua
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1903-1910
    • /
    • 2012
  • This paper presents a data based low-order controller design algorithm for a linear time-invariant process with a time delay. The algorithm is composed by combining an identification step based on open loop pulse test with a low-order controller design step to obtain the entire set of controllers achieving multiple performance specifications. The initial information necessary for this algorithm are merely the width and amplitude of a rectangular pulse, a controller of four types (PI, PD, PID, first-order), and design objectives. Various parametric approaches that have been developed are merged in the controller design algorithm. The resulting controller set satisfying the design objectives are displayed on the 2D and 3D graphics and thus it is very easy for us to pick a controller inside the admissible set because we can check the corresponding closed-loop performances visually.

Gradient Optimized Gradient-Echo Gradient Moment Nulling Sequences for Flow Compensation of Brain Images

  • Jahng, Geon-Ho;Stephen Pickup
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • Gradient moment nulling techniques require the introduction of an additional gradient on each axis for each order of motion correction to be applied. The additional gradients introduce new constraints on the sequence design and increase the demands on the gradient system. The purpose of this paper is to demonstrate techniques for optimization of gradient echo gradient moment nulling sequences within the constraints of the gradient hardware. Flow compensated pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. The design of the gradient moment nulling sequences requires the solution of a linear system of equations. A Mathematica package was developed that interactively solves the gradient moment nulling problem. The package allows the physicist to specify the desired order of motion compensation and the duration of the gradients in the sequence with different gradient envelopes. The gradient echo sequences with first, second, and third order motion compensation were implemented with minimum echo time. The sequences were optimized to take full advantage of the capabilities of the gradient hardware. The sequences were used to generate images of phantoms and human brains. The optimized sequences were found to have better motion compensation than comparable standard sequences.

  • PDF

Moment Lyapunov exponents of the Parametrical Hill's equation under the excitation of two correlated wideband noises

  • Janevski, Goran;Kozic, Predrag;Pavlovic, Ivan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.525-540
    • /
    • 2014
  • The Lyapunov exponent and moment Lyapunov exponents of Hill's equation with frequency and damping coefficient fluctuated by correlated wideband random processes are studied in this paper. The method of stochastic averaging, both the first-order and the second-order, is applied. The averaged $It\hat{o}$ differential equation governing the pth norm is established and the pth moment Lyapunov exponents and Lyapunov exponent are then obtained. This method is applied to the study of the almost-sure and the moment stability of the stationary solution of the thin simply supported beam subjected to time-varying axial compressions and damping which are small intensity correlated stochastic excitations. The validity of the approximate results is checked by the numerical Monte Carlo simulation method for this stochastic system.

Torsional moment of orthodontic wires (교정용 와이어의 비틀림 모멘트)

  • Choy, Kwangchul;Kim, Kyung-Ho;Park, Young-Chel;Kang, Chang-Soo
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.467-473
    • /
    • 2000
  • As a rectangular wire Is inserted into edgewise brackets the wire exerts a force system three-dimensionally. The force system may include bending force in first and second orders and a torsional force in third order Analytical and experimental studies on bending force have been Introduced, but information about torsion is still lack. The purpose of this study was to estimate the torsional moment in the force system of rectangular arch wires through theoretical and experimental studies. Wires most frequently used for third order control were selected as study materials. Cross sections of 0.016x0.022, 0.017x0.025, 0.019x0.025 inch rectangular wires in foot different materials such as stainless steel(Ormco), TMA(Ormco), NiTi(Ormco), and braided stainless steel (DentaFlex, Dentaurum) were used. The torque/twist rate of each test material was calculated using the torsion formula. Torque/twist rate, yield torsional moment, and ultimate torsional moment were measured with a torque gauge. The torsion formula assesses that the torque/twist rate (T/$\theta$) is proportional to the characteristics of material (G) and cross section (J), and is inversely proportional to the length of wire (L). Most experimental results corresponded with the formula. The relative stiffness was calculated for reference to a logical sequence of wire changes.

  • PDF

Numerical Verification of the First Four Statistical Moments Estimated by a Function Approximation Moment Method (함수 근사 모멘트 방법에서 추정한 1∼4차 통계적 모멘트의 수치적 검증)

  • Kwak, Byung-Man;Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.490-495
    • /
    • 2007
  • This research aims to examine accuracy and efficiency of the first four moments corresponding to mean, standard deviation, skewness, and kurtosis, which are estimated by a function approximation moment method (FAMM). In FAMM, the moments are estimated from an approximating quadratic function of a system response function. The function approximation is performed on a specially selected experimental region for accuracy, and the number of function evaluations is taken equal to that of the unknown coefficients for efficiency. For this purpose, three error-minimizing conditions are utilized and corresponding canonical experimental regions constructed accordingly. An interpolation function is then obtained using a D-optimal design and then the first four moments of it are obtained as the estimates for the system response function. In order to verify accuracy and efficiency of FAMM, several non-linear examples are considered including a polynomial of order 4, an exponential function, and a rational function. The moments calculated from various coefficients of variation show very good accuracy and efficiency in comparison with those from analytic integration or the Monte Carlo simulation and the experimental design technique proposed by Taguchi and updated by D'Errico and Zaino.

A Study on the Risk Assessment of Small Reservoirs using Reliability Analysis Methods (신뢰도 분석기법을 이용한 소규모 저수지의 위험도 분석)

  • Kim, Mun-Mo;Park, Chang-Eon
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.15-30
    • /
    • 2000
  • This study is to develop the applied method of reliability analysis to present risk - initial water level relationship in the small reservoir. To determine the reliability, the grasping of uncertainty sources is prerequisited and performance function is formulated. Reliability analysis method is a statistical method and the basic procedure of risk evaluation for overtopping of reservoir is as follows. 1. Define the risk criterion and performance function for the overtopping. 2. Determine the uncertainties of all the variables in the performance function. 3. Perform the risk analysis with suitable risk calculation method. Reliability analysis method such as Monte Carlo simulation(MCS) method and mean value first order second moment(MVFOSM) method are used to calculate the risk for reservoir. Finally, risk - initial water level relationship is established according to return period and it is useful for reservoir operation and safety assessment.ssment.

  • PDF