• Title/Summary/Keyword: First-Order Response Surface Model

Search Result 57, Processing Time 0.029 seconds

Assessment of Voigt and LRVE models for thermal shock analysis of thin FGM blade: A neutral surface approach

  • Ankit Kumar;Shashank Pandey
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.105-118
    • /
    • 2023
  • The present work is an attempt to develop a simple and accurate finite element formulation for the assessment of thermal shock/thermally induced vibrations in pretwisted and tapered functionally graded material thin (FGM) blades obtained from Voigt and local representative volume elements (LRVE) homogenization models, based on neutral surface approach. The neutral surface of the FGM blade does not coincide with its mid-surface. A finite element model (FEM) is developed using first-order shear deformation theory (FSDT) and the FGM turbine blade is modelled according to the shallow shell theory. The top and the bottom layers of the FGM blade are made of pure ceramic and pure metal, respectively and temperature-dependent material properties are functionally graded in the thickness direction, the position of the neutral surface also depends on the temperature. The material properties are estimated according to two different homogenization models viz., Voigt or LRVE. The top layer of the FGM blade is subjected to high temperature and the bottom surface is either thermally insulated or kept at room temperature. The solution of the nonlinear profile of the temperature in the thickness direction is obtained from the Fourier law of heat conduction in the unsteady state. The results obtained from the present FEM are compared with the benchmark examples. Next, the effect of angle of twist, intensity of thermal shock, variable chord and span and volume fraction index on the transient response due to thermal shock obtained from the two homogenization models viz., Voigt and LRVE scheme is investigated. It is shown that there can be a significant difference in the transient response calculated by the two homogenization models for a particular set of material and geometric parameters.

Size-dependent analysis of functionally graded ultra-thin films

  • Shaat, M.;Mahmoud, F.F.;Alshorbagy, A.E.;Alieldin, S.S.;Meletis, E.I.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.431-448
    • /
    • 2012
  • In this paper, the first-order shear deformation theory (FSDT) (Mindlin) for continuum incorporating surface energy is exploited to study the static behavior of ultra-thin functionally graded (FG) plates. The size-dependent mechanical response is very important while the plate thickness reduces to micro/nano scales. Bulk stresses on the surfaces are required to satisfy the surface balance conditions involving surface stresses. Unlike the classical continuum plate models, the bulk transverse normal stress is preserved here. By incorporating the surface energies into the principle of minimum potential energy, a series of continuum governing differential equations which include intrinsic length scales are derived. The modifications over the classical continuum stiffness are also obtained. To illustrate the application of the theory, simply supported micro/nano scaled rectangular films subjected to a transverse mechanical load are investigated. Numerical examples are presented to present the effects of surface energies on the behavior of functionally graded (FG) film, whose effective elastic moduli of its bulk material are represented by the simple power law. The proposed model is then used for a comparison between the continuum analysis of FG ultra-thin plates with and without incorporating surface effects. Also, the transverse shear strain effect is studied by a comparison between the FG plate behavior based on Kirchhoff and Mindlin assumptions. In our analysis the residual surface tension under unstrained conditions and the surface Lame constants are expected to be the same for the upper and lower surfaces of the FG plate. The proposed model is verified by previous work.

Design Optimization of UMPC Keypad Using Human Finger (인체 손가락 해석을 통한 UMPC 키패드 설계 최적화)

  • Park, Soo-Hyun;Kim, Kwang-Il;Yang, Tae-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.544-547
    • /
    • 2008
  • As the mobile electronic product is getting slimmer and smaller, the necessity of keypad is being increased. But the possibility of mis-typing keypad is increased rapidly due to the integrated keypad in the small mobile product. The business division has not considered the methodology of keypad design essentially. In this paper, analysis method and design evaluation standard to reduce the mis-typing of UMPC(Ultra Mobile Personal Computer) is suggested. First, the finite element analysis model and the biomechanical human body model are implemented in order to simulate the exact contact characteristic between finger and keypad. The reliability of analysis model is guaranteed by the comparison of the contact pressure between analysis result and experiment result of the pressure sensor. The design optimization of key shape and layout is derived through the response surface method. The prototype model is produced with the optimized design of keypad, and then it verified the advanced function with user mis-typing detection test. The optimized keypad design reduced the mis-typing ratio from 35% of existing model to 75 of proposed model. If this paper is widely applied to not only UMPC but also the other electronic products, the emotional quality of all products could be improved considerably.

  • PDF

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

Reliability Prediction of Failure Modes due to Pressure in Solid Rocket Case (고체로켓 케이스 내압파열 고장모드의 신뢰도예측)

  • Kim, Dong-Seong;Yoo, Min-Young;Kim, Hee-Seong;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.635-642
    • /
    • 2014
  • In this paper, an efficient technique is developed to predict failure probability of three failure modes(case rupture, fracture and bolt breakage) related to solid rocket motor case due to the inner pressure during the mission flight. The overall procedure consists of the steps: 1) design parameters affecting the case failure are identified and their uncertainties are modelled by probability distribution, 2) combustion analysis in the interior of the case is carried out to obtain maximum expected operating pressure(MEOP), 3) stress and other structural performances are evaluated by finite element analysis(FEA), and 4) failure probabilities are calculated for the above mentioned failure modes. Axi-symmetric assumption for FEA is employed for simplification while contact between bolted joint is accounted for. Efficient procedure is developed to evaluate failure probability which consists of finding first an Most Probable Failure Point(MPP) using First-Order Reliability Method(FORM), next making a response surface model around the MPP using Latin Hypercube Sampling(LHS), and finally calculating failure probability by employing Importance Sampling.

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

Effect of Process Parameters on Residual NCO and Viscosity of Pre-Polymers (Pre-Polymer의 제조에서 공정변수가 잔류 NCO 및 점도에 미치는 영향)

  • Kim, Sang-Oh;You, Man-Hee;Ha, Man-Kyung;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.61-66
    • /
    • 2008
  • For the production of urethane prepolymer, the effect of process parameters such as diisocyanate MDI and polyol TDI was tested. In this paper, design of experiments has been adopted for studying the effect of the process parameters on the improvement of NCO and viscosity of pre-polymer. As a result of comparison of different parameters, the effect of polyol was stronger than that of isocyanate in comparison of reactivity according to the amounts of isocyanate and polyol. Especially, NCO and viscosity of pre-polymer affected a product safety.

  • PDF

A Study on the Influence of a Missing Cell in a Class of Central Composite Designs

  • Park, Sung-Hyun;Noh, Hyun-Gon
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.133-152
    • /
    • 1998
  • The central composite design is widely used in the response surface analysis, because it can fit the second order model with small experimental points. In practice, the experimental data are not always obtained on all the points. When there are missing observations, many problems due to the missing cells can occur. In this paper, the influence of a missing cell on the central composite design is discussed. First, the influences of a missing cell on the variances of estimated regression coefficents are compared as $\alpha$ varies. Second, how the average predition variance is affected by a missing sell is discussed. And the influence on rotatability is investigated. Third, the influence of a missing cell on optimality, especially on D-optimality and A-optimality, is examined.

  • PDF

Metamodel based multi-objective design optimization of laminated composite plates

  • Kalita, Kanak;Nasre, Pratik;Dey, Partha;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.301-310
    • /
    • 2018
  • In this paper, a multi-objective multiparameter optimization procedure is developed by combining rigorously developed metamodels with an evolutionary search algorithm-Genetic Algorithm (GA). Response surface methodology (RSM) is used for developing the metamodels to replace the tedious finite element analyses. A nine-node isoparametric plate bending element is used for conducting the finite element simulations. Highly accurate numerical data from an author compiled FORTRAN finite element program is first used by the RSM to develop second-order mathematical relations. Four material parameters-${\frac{E_1}{E_2}}$, ${\frac{G_{12}}{E_2}}$, ${\frac{G_{23}}{E_2}}$ and ${\upsilon}_{12}$ are considered as the independent variables while simultaneously maximizing fundamental frequency, ${\lambda}_1$ and frequency separation between the $1^{st}$ two natural modes, ${\lambda}_{21}$. The optimal material combination for maximizing ${\lambda}_1$ and ${\lambda}_{21}$ is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand the effect of each parameter on the desired response parameters.

Degradation of oxytetracycline by nano zero valent iron under UV-A irradiation: Chemical mechanism and kinetic

  • Hassanzadeh, Parisa;Ganjidoust, Hossein;Ayati, Bita
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.29-43
    • /
    • 2014
  • Pharmaceutical wastewater effluents are well known for their difficult elimination by traditional biotreatment methods and their important contribution to environmental pollution due to its fluctuating and recalcitrant nature. OTC is one of the nonbiodegradable antibiotics that makes antibiotic-resistant, so it can make be high risk for environment. NZVI can be a good choice for removal of OTC in aqueous solution. Response surface methodology (RSM) was used to optimize the amounts of NZVI and OTC to be used at pH 3 and under 200 W, UV-A irradiation. The responses were removal percent of absorption at 290 and 348 nm, TOC and COD of OTC. In the optimum condition, Linear model was performed 155 ppm of OTC were removed by 1000 ppm NZVI after 6.5 hours and the removal efficiency of absorption at 290 and 348 nm, TOC and COD were 87, 95, 85 and 89 percent, respectively. In the similar process, there is no organic compound after 14 hours. The parameters ORP, DO and pH were investigated for 6:30 hours to study the type of NZVI reaction in process. In the beginning of reaction, oxidation was the dominant reaction after 3 hours, photocatalytic reaction was remarkable. The mechanism of OTC degradation is proposed by HPLC/ESI-MS and four by products were found. Also the rate constants (first order kinetic chain reaction model) were 0.0099, 0.0021, 0.0010, 0.0049 and $0.0074min^{-1}$, respectively.