• 제목/요약/키워드: First stage pressure

검색결과 235건 처리시간 0.029초

증기터빈 1단 Shell 압력측정에 의한 교축유동 고찰 (A Study of Steam Turbine Throttle Flow from Measured First Stage Shell Pressure)

  • 윤인수;이재헌;유호선;문승재;이태구;허진혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.373-376
    • /
    • 2008
  • Industrial Steam Turbine first stage shell pressure is related to throttle flow. Theoretically, first stage shell pressure could, therefore, be measured and used as an index of turbine throttle flow. However, accurate flow measurements show that this pressure is not a reliable index of the actual flow. Data analysis of steam turbinessubjected to ASME acceptance tests shows that the use of first stage shell pressure as an index of throttle flow produced errors as large as 9.6 %. The mean of the errors was +2.2% with a standard deviation of ${\pm}$2.8 %. Applications that require an accuratedetermination of turbine steam flow, such as turbine acceptance testing, should, therefore, not rely on this method. Therefore, First stage shell pressure measurement serves as a valid and economical indicator of turbine throttle flow in cases where a high degree of accuracy in throttle flow measurement is not required but repeatability is desired, such as for boiler control. Generally speaking, Steam turbine first stage shell pressure may also be a very useful monitor of turbine performance when used with certain other turbine measurements.

  • PDF

1단 비례 압력제어밸브의 정특성 및 동특성 실험 (Static Characteristic and Dynamic Characteristic Experiment of First-stage Proportional Pressure Control Valve)

  • 정헌술;남지우;임효준;정승욱;한성민
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.18-24
    • /
    • 2010
  • Because of the increasing demand on the high precision and high response of a machinery, electronic control valves are widely adopted at various application fields. This paper studies on the static characteristic of a first-stage proportional pressure control valve. At first an experimental apparatus including hyd. pump variable speed inverter, pressure and data aquisition system was setted up with the experimental apparatus, various tests such as P-Q-W test, hyd, pump, dynamic, static, frequency response test of the proportional valve was carride out and the results are discussed.

  • PDF

Experimental research on 2 stage GM-type pulse tube refrigerator for cryopump

  • Park, Seong-Je;Ko, Jun-Seok;Hong, Yong-Ju;Kim, Hyo-Bong;Yeom, Han-Kil;Koh, Deuk-Yong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권2호
    • /
    • pp.29-33
    • /
    • 2010
  • The experimental results of the 2 stage Gifford-McMahon(GM) type pulse tube refrigerator (PTR) or cryopump are presented in this paper. The objectives of his study are to develop design technology of the integral type 2 stage PTR which rotary valve is directly connected to he hot end of the regenerator and acquire its improved performance. Design of the 2 stage PTR is conducted by FZKPTR(Forschungs Zentrum Karlsruhe Pulse Tube Refrigerator) program for the design of pulse tube refrigerators. The fabricated PTR has U-type configuration and incorporates orifice valve, double-inlet valve and reservoir as phase control mechanism. Rotary valve is used to make pulsating pressure and is directly connected to inlet of $1^{st}$ stage regenerator. From experiments, cooling performance map and pressure waveform at each point were measured for different operating frequencies. Experimental results show the best cooling performance with 2 Hz operation in spite of small pressure amplitude. The lowest temperatures of the 2 stage PTR were 16.9 K at the second stage and 58.0 K at the first stage. The cooling capacities achieved were 14.4 W at 79 K, the first stage and 3.6 W at 29 K, the second stage.

다단 천음속 축류형 압축기 성능에 관한 실험적 연구 (Experimental Research on Multi Stage Transonic Axial Compressor Performance Evaluation)

  • 강영석;박태춘;황오식;양수석
    • 한국유체기계학회 논문집
    • /
    • 제14권6호
    • /
    • pp.96-101
    • /
    • 2011
  • Korea Aerospace Research Institute is performing 3 stage transonic axial compressor development program. This paper introduces design step of the compressor, the performance test results and its analysis. In the fore part of the paper, aerodynamic process of the 3 stage axial compressor is presented. To satisfy both of the mass flow and pressure rise, the compressor should rotate at a high rotational speed. Therefore the transonic flow field forms in the rotor stages and it is designed with a relatively high pressure rise per stage to satisfy its design target. The compressor stage consists of 3 stages, and the bulk pressure ratio is 2.5. The first stage is burdened with the highest pressure ratio and less pressure rises occur in the following stages. Also it is designed that tip Mach number of the first rotor row does not exceed 1.3, while the maximum relative Mach number in the rotor stage is between 1.3~1.4 to increase the compressor flow coefficient. The final design has been confirmed by iterating three dimensional CFD calculations to verify design target and some design intentions. In the latter part of the paper, its performance test processes and results are presented. The performance test result shows that the overall compressor performance targets; pressure ratio and efficiency are well achieved. The stator static pressure distributions show that the blade loading is gradually increasing from the downstream of the compressor.

2단 경가스총에 대한 실험적 연구 (Experimental Study on the Two-Stage Light-Gas Gun)

  • 이중근;이종성;김희동;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.345-348
    • /
    • 2010
  • Two-stage light-gas gun은 고압실, 압축실 그리고 발사관으로 비교적 간단한 구조로 구성되며, 짧은 시간동안 초고압을 발생시키기 용이함으로 현재까지 고속충격역학, 발사체 공기역학, 재료역학 등 다양한 공학 분야에서 적용되어왔다. 본 연구는 초고압 액체 제트 분사에 적용하기 위한 기초적 연구로서, 고압실 하류에 설치된 제1격막의 파막 압력의 변화에 따른 발사체의 속도 변화 및 관내 압력 거동을 조사하기위하여, 다양한 격막을 적용하여 실험을 수행하였다. 제1격막의 파막 압력은 발사체의 속도에 지배적인 영향을 미치게 되며, 약 14 Bar이상일 경우 발사관의 압력이 압축튜브의 압력보다 크게 증가하였다.

  • PDF

증기터빈 1단 노즐의 조속현상이 터빈성능에 미치는 영향 (Effects of flow variation in the first stage nozzle on the performance of a partial arc admission in a steam turbine)

  • 윤인수;이태구;문승재;이재헌
    • 플랜트 저널
    • /
    • 제4권3호
    • /
    • pp.60-65
    • /
    • 2008
  • Power plant industry has been developed at high-capacity, high-technology, and innovation. Steam turbine became the most useful equipment that dominate more than 50% of all the world electricity production. And developed new materials of the turbine blade and extended length of the turbine last blade brought reform in steam turbine performance upgrade. In this paper, when do partial load driving in high-capacity steam turbine, optimum driving method found whether there is something. In operating steam turbine, there is a lot of loss from secondary wake and throttle of the 1st stage nozzle by the biggest leading factor that load fluctuation affects in high-pressure steam turbine performance. Effect of internal efficiency by 1 stage nozzle is the biggest here, but here fluid flow and flow analysis were not yet examined closely definitely. So, Analyzed design data and acceptance performance test result to applying subcritical pressure drum type 560 MW, supercritical-pressure once through type 500 MW, and 800 MW steam turbines actually. In conclusion, at partial load driving, partial arc admission(PAA) is more efficient than full arc admission(FAA) efficiency. This is judged by because increase being proportional with gross energy of stream that is pressure - available energy if pressure of stream that is flowed in to the turbine increases, available energy becomes maximum and turbine efficiency improves. Therefore, turbine performance is that preview that first stage performance fell if decline is serious in partial load because first stage performance changes according to load.

  • PDF

2단 Gifford-McMahon 극저온냉동기의 특성실험 (An Experimental Study of the 2-stage Gifford-McMahon Cryorefrigerator)

  • 박성제;고득용;유창종;김의준;최헌오
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.198-206
    • /
    • 1993
  • Experimental results of two stage Gifford-McMahon cryorefrigerator are described. In-prototype experiments, drive mechanism is Scotch Yoke type driven by stepping motor, copper meshes and lead balls are used for regenerator's materials in the first stage and the second stage, respectively. To find optimal conditions of the cryopump, no load temperature and refrigeration capacity according to the variation of cycle frequency and operating pressure are measured, and the cool down and load characteristics at particular cycle frequencies are presented. In general, as the cycle frequency is lowered, no load temperature is dropped but refrigeration capacity is diminished. As the representative result, in a case that the cycle frequency is 70rpm and steady state pressure is 14 atm, no load temperature of second stage is lowered to 10.5K in 55 minuters, and in this situation the refrigeration capacity of the first stage is 42W at 80K, that of the second stage is 11 W at 20K.

  • PDF

대유량 솔레노이드 밸브 개발에 관한 연구 (A Study on Development of High Flow Solenoid Valves)

  • 정찬세;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권1호
    • /
    • pp.7-13
    • /
    • 2013
  • Port size 80mm or above large-flow type solenoid valves are extensively used in dust collector and power plants. These multi-stage solenoid valve have few problem. first, multi-solenoid valves are almost depend on imports and there are weak in the brine environment and the low energy efficiency. Because these problem, increased the necessity of research on the development of large flow and high pressure type solenoid valves. In this study, describe the design method of multi-stage solenoid test bench and confirm the influence valve performance on several parameter such as diaphragm orifice diameter. At first, each part has modeled by AMESim simulation tool and combining them. This AMESim virtual multi-stage solenoid valve found influence valve performance on the valve parameter. Finally developed the multi-stage solenoid valve and verified that performance on experimental result.

3단압축 드라이아이스 제조사이클의 압축동력과 엑서지 해석 (Compression Power and Exergy Analysis in a Dry Ice Production Cycle with 3-stage Compression)

  • 이근식
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.550-560
    • /
    • 2000
  • In order to minimize compression power and analyze the cause of exergy loss for a dry ice production cycle with 3-stage compression, the variation of compression power was investigated and the exergy analysis was peformed for the cycle. In this cycle, $CO_2$, is used both as a refrigerant and as a raw material for dry ice. The behavior of compression power and irreversibility in the cycle were examined as a function of intermediate pressure. From this result, the conditions for the minimum compression power were obtained in terms of the first stage or the third stage pressure. In addition, the irreversibilities for the cycle were investigated with respect to the efficiency of compressor. Result shows that the optimum pressure is not consistent with the conventional pressure obtained from the equal-pressure-ratio assumption. This is mainly due to the change in mass flow rate of the intermediate stage compressor by the flash gas evaporation from the flash drums. Most important is that the present exergy analysis enabled us to find bad performance components for the cycle and informed us of methods to improve the cycle performance.

  • PDF

석유계 잔사유(PFO)의 피치 합성 시 압력조건에 따른 피치 특성 변화 (Identification of Synthesized Pitch Derived from Pyrolyzed Fuel Oil (PFO) by Pressure)

  • 서상완;김지홍;이영석;임지선
    • 공업화학
    • /
    • 제29권6호
    • /
    • pp.652-656
    • /
    • 2018
  • 본 연구에서는 석유계 잔사유를 원료로 피치 합성반응 중 압력변수에 의한 영향을 고찰하였다. 압력변수를 달리하여 두 단으로 나누어 반응을 진행하였다. 실험은 두 단을 연속적으로 진행하였고, 첫 번째 단에 가압, 상압, 감압으로 열처리를 진행하였고, 두 번째 단은 상압과 감압으로 실험하였다. 합성 온도는 $400^{\circ}C$, 합성 시간은 총 2 h으로 피치 합성을 진행하였다. 각 조건에 의해 제조된 피치의 열적 특성과 분자량 분포는 연화점 측정과 MALDI-TOF 분석을 통해 고찰하였다. 또한, GC-SIMDIS를 이용해 피치 합성 반응 중 휘발된 액상 성분에 대한 특성을 고찰하였다. 첫 번째 단에서 가압 조건을 이용한 경우, 저비점 물질들이 상대적으로 다른 두 조건보다 많이 피치 합성 반응에 참여하였으며, 저비점 물질들의 반응참여 효과로 낮은 연화점을 갖는 피치를 얻을 수 있었다. 반대로 첫 번째 단에서 감압 조건을 사용한 경우, 저비점 물질들이 효과적으로 휘발되어 반응기 외부로 빠져나가 낮은 피치 수율을 얻었고, 일부 코크스화가 진행된 결과를 얻을 수 있었다. 압력 공정변수를 제어하여 피치의 수율 및 연화점 등 물성을 효과적으로 조절할 수 있는 공정변수를 도출하였다.