• Title/Summary/Keyword: Firing Zone

Search Result 28, Processing Time 0.023 seconds

The Comparison of the Relationship between the Gunfire Shot and Its Resulting Heavy Metal Pollution Rate (소화기 사격장의 사격에 따른 중금속 오염도 비교(I))

  • Hong, Sung Tae;Hyun, Jae Hyuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.1-5
    • /
    • 2014
  • The following research was initiated in order to compare the relationship between the amount of gunfire shot and its resulting heavy metal pollution rate. The research was conducted at two firing ranges located inside a military unit stationed in the rear strategical area, where one full distance firing range is used by soldiers in active service, and the other is used by recruits and reserves. The heavy metal pollution rate was measured also on water sample collected from the target zone while raining. Based on values such as the real amount of gunshot fired, amount of heavy metal in the soil of the target zone, and the degree of heavy metal pollution for each firing range, the research showed that although pollution rate was higher when more gunshots were fired, there was no close correlation between the two. The water samples showed that this might result from the soils containing heavy metals eroded and transported by rain due to the target zone having no vegetation.

Numerical Simulation on the Effects of Air Staging for Pulverized Coal Combustion in a Tangential-firing Boiler (접선연소식 보일러에서 미분탄 연소 시 공기 배분의 영향에 대한 전산해석연구)

  • Kang, Kieseop;Ryu, Changkook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.548-555
    • /
    • 2017
  • This study investigated the influence of air staging on combustion and NOx emission in a tangential-firing boiler at a 560 MWe capacity. For air staging, the stoichiometric ratio (SR) for the burner zone was varied from 0.995 to 0.94 while the overall value was fixed at 1.2. The temperature and heat flux in the burner zone and upper furnace corresponded to the distribution of SR, while the total boiler efficiency remained similar. The NOx emission at the furnace exit was reduced by up to 20% when the SR in the burner zone decreased to 0.94. However, the amount of unburned carbon and slagging propensity was not noticeably influenced by the changes in the SR of the burner zone. Therefore, it was favorable to lower the SR of the burner zone for reduction of NOx emission.

Effect of Co-firing PKS and Coal on Flame Structure in a Pulverized Coal Swirl Burner (미분탄 스월버너에서 PKS와 석탄 혼소가 화염 구조에 미치는 영향)

  • Shin, Minho;Sung, Yonmo;Choi, Minsung;Lee, Gwangsu;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.30-38
    • /
    • 2016
  • Flame structure of co-firing coal and palm kernel shell (PKS) was investigated in a pulverized coal swirl burner by particle image velocimetry (PIV). The pulverized coal swirl flame is operated with a PKS blending ratio of 10%, 20%, and 30%. For all operating conditions, flame structures such as internal recirculation zone (IRZ), outer recirculation zone (ORZ), and exhaust tube vortex (ETV) were observed. In the center of flame, the strong velocity gradient is occurred at the stagnation point where the volatile gas combustion actively takes place and the acceleration is increased with higher PKS blending ratio. OH radical shows the burned gas region at the stagnation point and shear layer between IRZ and ORZ. In addition, OH radical intensity increases for a co-firing condition because of high volatile matter from PKS. Because the volatile gas combustion takes place at lower temperature, co-firing condition (more than 20%) leads to oxygen deficiency and reduces the combustibility of coal particle near the burner. Therefore, increasing PKS blending ratio leads to higher OH radical intensity and lower temperature.

Development of Fast Side-impact Sensing Algorithm (고속 측면 충돌 감지 알고리즘의 개발)

  • 박서욱;김현태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.163-170
    • /
    • 2000
  • Accident statistics shows that the portion of fatal occupant injuries due to side impacts is considerably high. The side impact usually leads to a severe intrusion of side structure into the passenger compartment. Furthermore, the safety zone for the side impact is relatively small compared to the front impact. Those kinds of physics for side impact frequently result in a fatal injury for the occupant. Therefore, NHTSA and EEVC are trying to intensify the regulation for the occupant protection against side impact. Both the regulation and recent market trends are asking for an installation of side airbag. There are several types of system configuration for side impact sensing. In this paper, we adopt the acceleration-based remote sensing method for the side airbag control system. We mainly focus on the development of hardware and crash discrimination algorithm of remote sensing unit. The crash discrimination algorithm needs fast decision of airbag firing especially for high-speed side impact such as FMVSS 214 and EEVC tests. It is also required to distinguish between low-speed fire and no-fire events. The algorithm should have a sufficient safety margin against any misuse situation such as hammer blow, door slam, etc. This paper introduces several firing criteria such as acceleration. velocity and energy criteria that use physical value proportional to crash severity. We have made a simulation program by using Matlab/Simulink to implement the proposed algorithm. We have conducted an algorithm calibration by using real crash data for 2,500cc vehicle. The crash performance obtained by the simulation was verified through a pulse injection method. It turned out that the results satisfied the system requirements well.

  • PDF

Study on the Method to Improve a Maritime Safety by Analysing the Distribution Characteristics of the Ships on Marine Firing Range (해상사격장 선박분포 특성 분석을 통한 해상안전 개선방안에 대한 연구)

  • Baek, Sang Hwa;Lee, Ah Yoon;Park, Ho Jun;Lee, Woo Sung;Choi, Kye Soog
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.79-85
    • /
    • 2020
  • Ahn-heung Proving Ground(APG) of Agency for Defense Development(ADD) is the only weapon test site which has been performing firing tests for many kinds of missile, artillery and ammunition. APG has been performing the firing tests of so many times every year. The tests related to missiles, artillery and ammunitions cover 80% among the quantity of annual test events. The target area of many kinds of missile, artillery and ammunition is on the sea. Therefore, APG has its marine firing ranges which were approved by the ministry of Defense. Both weapons and ships can run into each other on the sea. APG has to monitor and detect the positions of the ships in the specific dangerous zone on the sea. The positions of the ships are detected by Scanter 2001 radar and GPS100 detection radar. Evading the time period when the ships appear very often on the sea may be a good solution to keep the maritime safety. And evading the place where the ships appear very often on the sea may be a good solution as well. This paper is to analyze the ships' distribution characteristics of marine firing range, which are to raise the efficiency of many kinds firing tests which have been performed in APG of ADD. Ship distribution data from February 2014 to December 2016 were used in this paper. Ship distribution was analyzed with monthly data, seasonal data and etc. The number of the ships in approved sea area is higher in the morning than in the afternoon, and in fall than other seasons, and from August to November, and below 0.5 m in the hight of wave. Using the these conditions, we can raise the test efficiency of many kinds firing tests and guarantee maritime safety. The number of the ships in approved sea area is entirely unrelated to visibility of the sea. The time period when the number of the ships are high on the sea is morning. The season when the number of the ships are comparatively high on the sea is fall. APG of ADD could raise the efficiency of the firing tests and improve the maritime safety, using the analysis results of the characteristics on the ship distribution.

Technique of Direct Copper to Glass Seal in an Evacuated Tube Solar Collector (진공관형 태양열 집열기의 구리-유리 직접 접합 기술)

  • Kim, Cheol-Young;Lim, Hyong-Bong;Cho, Nam-Kwon;Kwak, Hee-Youl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.544-551
    • /
    • 2006
  • The sealing technique between a glass tube and a copper heat pipe in an evacuated tube solar collector is studied. In this study two different sealing techniques, such as flame method and furnace firing, are examined. After the sealing of a copper to a glass, the oxidation state of the copper and its bonding morphology were examined by SEM and XRD. Its oxidation was retarded by coating of borate solution on the copper, and $Cu_2O(cuprite)$ turned into CuO(tenorite) with increase in a firing temperature and firing time. Porous structure was found in the oxide layer when CuO formed. The best sealing morphology was observed when the thickness of the oxidation layer was less than $20{\mu}m$. The sealing technique performed in a furnace was promising and the satisfactory result was obtained when the sample was fired at $950^{\circ}C$ for 5 min under $N_2$ atmosphere. Annealing procedure is recommended to remove the stress left at the bonding zone.

Optimization of the firing process condition for high efficiency solar cells on single-crystalline silicon (고효율 Solar Cell 제조를 위한 Firing 공정 조건의 최적화)

  • Jeong, Se-Won;Lee, Seong-Jun;Hong, Sang-Jin;Han, Seung-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.4-5
    • /
    • 2006
  • This paper represents modeling and optimization techniques for solar cell process on single-crystalline float zone (FZ) wafers with high efficiency; There were the four significant processes : i)emitter formation by diffusion, anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); iii)screen-printing for front and back metallization; and iv)contact formation by firing. In order to increase the performance of solar cells, the contact formation process is modeled and optimized. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time, fabrication costs. The experiments were designed by using central composite design which is composed of $2^4$ factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the solar cell is modeled using neural networks. This model is used to analyse the characteristics of the process, and to optimize the process condition using genetic algorithms (GA). Finally, find optimal recipe for solar cell efficiency.

  • PDF

Prediction of Surface Water Contamination with RDX Transported from Soil in a Neighboring Firing Range (포탄 사격장 토양의 RDX에 의한 인근 하천 오염 예측)

  • Park, Jungtae;Lee, Dong Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.832-840
    • /
    • 2019
  • Recently, pollution from gunpowder due to shell shootings at military drilling sites has raised various environmental concerns. The purpose of this study is to predict the contamination level of RDX in the soil area of the firing range zone near Anwol river watershed, the study site, and the intake area, Anwol river and Imjin river, as a function of time and space. In this study, a multimedia model was developed to predict the variation of RDX contamination by rainfall. The range of the medium was limited to soil, water, and sediment, and excluded the atmosphere, taking into account the physical and chemical properties of RDX with low vapor pressure and low Henry's constant. The pollutant levels of the waters of compartments, including the last section of the Imjin River affecting the water intake, was compared with the environmental standard for RDX.

Design of Down Draft Kiln for Gas Firing II. Behavior of Flame (도염식 가스 가마의 설계 -II. 화염의 거동)

  • Lee, Ki-Gang;Kim, Hwan;Lim, Eung-Keuk
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 1987
  • An experimental study of the characteristics and the behavior of flames, and the aerodynamic flow pattern was carried out in the present work on a down draft kiln for gas firing. The aim of this work is to establish a behavior of flames and to know the extent to which the flow pattern is affected by the height of baffle plate. The measurements of temperature, concentrations of fuelgas, and kiln pressure were conducted at different temperature in kiln, and at different height of baffle plate. From the obtained results, it was found that the characteristics of thestagnation zone are greatly affected when changing over the height of baffle plate, and the best condition of that was 115m/m.

  • PDF

Air-Launched Weapon Engagement Zone Development Utilizing SCG (Scaled Conjugate Gradient) Algorithm

  • Hansang JO;Rho Shin MYONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Various methods have been developed to predict the flight path of an air-launched weapon to intercept a fast-moving target in the air. However, it is also getting more challenging to predict the optimal firing zone and provide it to a pilot in real-time during engagements for advanced weapons having new complicated guidance and thrust control. In this study, a method is proposed to develop an optimized weapon engagement zone by the SCG (Scaled Conjugate Gradient) algorithm to achieve both accurate and fast estimates and provide an optimized launch display to a pilot during combat engagement. SCG algorithm is fully automated, includes no critical user-dependent parameters, and avoids an exhaustive search used repeatedly to determine the appropriate stage and size of machine learning. Compared with real data, this study showed that the development of a machine learning-based weapon aiming algorithm can provide proper output for optimum weapon launch zones that can be used for operational fighters. This study also established a process to develop one of the critical aircraft-weapon integration software, which can be commonly used for aircraft integration of air-launched weapons.