• Title/Summary/Keyword: Firing Pin

Search Result 13, Processing Time 0.018 seconds

A Study on Realization of Wireless Umbilical Device for Missile Systems (유도무기체계의 무선배꼽장치 구현연구)

  • Eun, Heehyun;Jung, Sukjong;Jung, Jaewon;Ro, Donggyu;Kang, Cheewoo;Park, Youngsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.813-821
    • /
    • 2017
  • This paper presents the study result on a realization of wireless umbilical device for missile systems. In general, a missile system is connected to a fire control equipment via an umbilical connector to get the electrical power for its internal equipment and communicate with each other. And these connectors inherently have many problems of mis-contact between pin and socket, and mis-separation during missile firing, etc. A wireless umbilical device using LC resonance is devised to solve these problems of the current technology. For hundreds of watts power transmission under the missile system environment of restricted space, we designed and made a prototype of wireless umbilical device. And we tested this wireless umbilical device with an aluminum cylinder having cutout windows which simulate missiles. We realized that the wireless technology can be used as a substitute for the conventional umbilical connectors, and EMI and environment tests should be followed further.

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • Jeong, Myeong-Sang;Gang, Min-Gu;Lee, Jeong-In;Kim, Dong-Hwan;Song, Hui-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF

The Invention of Non-Release bolt by controlling expansion rate of bolt body (볼트 몸체 팽창률 제어를 통한 풀림방지볼트 개발)

  • Kim, Dong-Jin;Lee, Yeung-Jo;Lee, Jung-Bok;Kim, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.523-526
    • /
    • 2010
  • In this study, we demonstrated a development of a non-releasing bolt which is fastened with a target by expanding a certain area of a bolt body. Being released a bolt causes many problems in a field where bolts are used. In order to figure out the problems, currently, many types of a non-releasing bolt have been developed and have been using. Unfortunately, however, they do not perfectly function not to be released. Therefore, the structures builded with bolts have many problems caused by external stress such as vibration and shock, and thus the bolts have to be regularly tightened for maintenance. With the important factors of internal geometry, the amount of explosive, and the firing pin, we developed a technology which could control the expansion degree of a certain area on a bolt body. Based on the results, it was founded that the performance of non-releasing was linearly proportional to the degree of body expansion.

  • PDF