• 제목/요약/키워드: Fireside corrosion

검색결과 3건 처리시간 0.016초

석탄연소중 발생되는 보일러 튜브의 화염측 부식특성 (Fireside Corrosion Characteristics in Coal-Fired Boiler Tube)

  • 김태형;서상일;박호영;김영주
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.276-281
    • /
    • 2006
  • Although fireside corrosion of heat transfer surfaces in coal fired steam generators has been a problem to some extent for a number of tears, with the advent of low NOx firing systems these surfaces can be exposed to conditions that will exacerbate wastage rates. Numerous reports of waterwall wastage in coal fired boilers have appeared in the literature. It is believed that wastage results both from gaseous phase attack of metal surfaces and from deposition of ash and unburned fuel. Gaseous phase attack is known to occur in the presence of reducing sulfur species such as $H_2S$ and in the presence of fuel chlorine. The highest wastage rates are thought to be due to deposition of unoxidized material and the presence of fuel chlorine. Localized wall and near wall conditions that may exacerbate wastage include reducing conditions, high temperatures, high heat fluxes, and a high fraction of unoxidized material deposited. So, this study is directed at developing an advanced corrosion model in coal-fired utility boilers.

  • PDF

On-Site Corrosion Behavior of T91 Steel after Long-Term Service in Power Plant

  • He, Yinsheng;Chang, Jungchel;Lee, Je-Hyun;Shin, Keesam
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.612-615
    • /
    • 2015
  • In this work, on-site corrosion behavior of heat resistant tubes of T91, used as components of a superheater in a power plant for up to 25,762 h, has been investigated using scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscattered diffraction(EBSD), with the objectives of studying the composition, phase distribution, and evolution during service. A multi-layer structure of oxide scale was found on both the steamside and the fireside of the tube surface; the phase distribution was in the order of hematite/magnetite/spinel from the outer to the inner matrix on the steamside, and in the order of slag/magnetite/spinel from the outer to the inner matrix on the fireside. The magnetite layer was found to be rich in pores and cracks. The absence of a hematite layer on the fireside was considered to be due to the low oxygen partial pressure in the corrosion environment. The thicknesses of the hematite and of the slag-deposit layer were found to exhibit no significant change with the increase of the service time.

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권1호
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.