• Title/Summary/Keyword: Fire.explosion

Search Result 637, Processing Time 0.03 seconds

A Study on the Thermal Flux Estimation of Fireball (Fireball로 인한 Thermal flux 예측에 관한 연구)

  • Kim In-Tae;Kim In-Won;Song Hee-Oeul
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.46-52
    • /
    • 2000
  • In order to evaluate the risk assessment of Fireball, a program, FIRESTOR, was developed. With this program, thermal fluxes due to the fireball of propane and n-butane were predicted to analyze the damage of Puchen gas explosion accident and thermal fluxes compared with the BLEVE ESTIMATOR, and commercial program SAFER Dupont Co. Thermal fluxes with variation of distance from the explosion source by BLEVE ESTIMATOR, SAFER and FIRESTOR was made a comparative analysis each other for the constant pressure of propane and n-butane. The values calculated by FIRESTOR were between those by BLEVE ESTIMATOR and SAFER. Consequently FIRESTOR is proved to be an good program to analyze the damage of Fireball.

  • PDF

A Study on the Optimal Flash-Point of WDF Production (유화유 생산의 적정 인화점에 관한 연구)

  • Lee, Jin;Kim, Hwaseong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.310-314
    • /
    • 2020
  • Although waste oil derived fuel (WDF) production technology was developed under a government initiative ~10 years ago, it became stagnant owing to the small size of participating companies, residents' rejection of foul odor, and the nature of the technology for recycling waste that was avoided. However, this subject is under the spotlight again because of recent developments, such as garbage crisis. In particular, plastic is the most difficult waste to dispose of, with more than 4 million tons of plastic waste produced every year according to statistics from the Ministry of Environment. The most effective method for treating plastic waste is to produce WDF through low temperature thermal decomposition. The WDF includes several volatile ingredients that mostly limit the use of fuel for boilers, owing to safety concerns. In particular, flash point is legally stipulated because of secondary contamination in the distribution process and the risk of fire and explosion. It is required that external shipments (distribution) should be maintained in the range of at least 30~60℃ (excluding explosion prevention facilities) for diesel power generation. Therefore, this study seeks to find the flash point that is best suited to WDFs produced from plastic waste.

Forensic Engineering Study on Assessment of Damage to Pressure Vessel Because of CNG Vehicle Explosion (CNG 차량 폭발의 용기 손상 평가에 관한 법공학적 연구)

  • Kim, Eui-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.439-445
    • /
    • 2011
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses have to be equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. Hence, the investigation of such accidents is usually associated with engineering analysis. Among the possible reasons for such CNG explosion accidents is vehicle fire and vessel fracture. By conducting formal inspection and engineering tests, in this study, the cause of vessel explosion is investigated by analyzing the failure mechanism by fractography and by comparing the material properties of a reference part with those of a problem part by adopting instrumented indentation technique.

A Study on the Non-Hazardous Method for complying with the Explosion Proof Criteria of the Electrolysis (수전해설비의 전기방폭 기준 만족을 위한 비방폭화 방안에 관한 연구)

  • YongGyu, Kim;ShinTak, Han;JongBeom, Park;ByungChan, Kong;GyeJun, Park;SeungHo, Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.65-75
    • /
    • 2022
  • Recently, the possibility of fire and explosion due to hydrogen leakage and the resulting risk are increasing since the operating pressure of the electrolysis increases. This study performed the hazardous area classification in accordance with KS C IEC 60079-10-1 and KGS GC101 in consideration of the general operating conditions of the electrolysis. In addition, in order to achieve a To Non-hazardous, an appropriate ventilation rate was estimated to maintain a concentration of less than 25 % of the lower explosive limit. As a result, it was reviewed that the electrolysis is classified as an hazardous area when only natural ventilation is applied, and a huge amount of ventilation is required to classify it as a non-hazardous area.

The Measurement and Prediction of Flash Point for Binary Mixtures of Methanol, Ethanol, 2-Propanol and 1-Butanol at 101.3 kPa (Methanol, Ethanol, 2-Propanol 그리고 1-Butanol 이성분 혼합계에 대한 101.3 kPa에서의 인화점 측정 및 예측)

  • Oh, In Seok;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.1-6
    • /
    • 2015
  • Flash point is one of the most important variables used to characterize fire and explosion hazard of liquids. The lower flash point data were measured for the binary systems {methanol + 1-butanol}, {ethanol + 1-butanol} and {2-propanol + 1-butanol} at 101.3 kPa. Experiments were performed according to the standard test method (ASTM D 3278) using a SETA closed cup flash point tester. The measured flash points were compared with the predicted values calculated using the following activity coefficient models: Wilson, Non-Random Two Liquid (NRTL), and UNIversal QUAsiChemical (UNIQUAC). The measured FP data agreed well with the predicted values of Raoult's law, Wilson, NRTL and UNIQUAC models. The average absolute deviation between the predicted and measured lower FP was less than 1.14 K.

A Study on the Efficient Operation of Self-audit in Large-scale PSM Workplace (대규모 PSM 사업장의 자체감사에 대한 효율적 운영 연구)

  • Min, Se-Hong;Kim, Seok-Won
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.115-121
    • /
    • 2013
  • Industrial facilities are becoming bigger and more up to date, And a kind of the hazardous material used in the industrial filed is diversified. Therefore, serious accidents such as leakage of toxic materials, fire and explosion, is continuously occurred. There is Process Safety Management (PSM) system of the several preventive systems, but it is supposed to be a limitation to ensure safety or huge PSM industrial sites where have potential to catastrophically invisible and unexpected risks because it is still being managed by instruction and inspection of authority having jurisdiction other than self-regulating management differing from the primarily aim of PSM system. To verify safety management system of work-place, supplementation of existing system is urgently required. In this study, it suggests that PSM self-audit be emphasized significantly analyzing problems of the current systems for enhancing self-audit be emphasized significantly analyzing problems of the current systems for enhancing self-control safety through efficient self-audit management and improving the existing system and improving the existing as verifying the system there of, as well as studying methods which can support institutionally.

On Multiple ETA-based Test Framework to Enhance Safety Maturity of Live Fire Tests for Weapon Systems (무기체계 실사격 시험의 안전성 강화를 위한 다중 사건나무분석 기반의 시험구조에 관한 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Successful development of weapon systems requires a stringent verification and validation (V&V) process due to the nature of the weapons in which continual increase of operational capability makes the system requirements more complicated to meet. Thus, test and evaluation (T&E) of weapon systems is becoming more difficult. In such a situation, live fire tests appear to be effective and useful methods in not only carrying out V&V of the weapon systems under development, but also increasing the maturity of the end users operability of the system. However, during the process for live fire tests, a variety of accidents or mishaps can happen due to explosion, pyro, separation, and so on. As such, appropriate means to mitigate mishap possibilities should be provided and applied during the live fire tests. To study a way of how to accomplish it is the objective of this paper. To do so, top-level sources of hazard are first identified. A framework for T&E is also described. Then, to enhance the test range safety, it is discussed how test scenarios can be generated. The proposed method is based on the use of the anticipatory failure determination (AFD) and multiple event tree analysis (ETA) in analyzing range safety. It is intended to identify unexpected hazard components even in the environment with constraints. It is therefore expected to reduce accident possibilities as an alternative to the traditional root-cause analysis.

A Study on Disaster Experience and Preparedness of University Students (일 지역 대학생의 재난경험과 재난대비에 대한 조사연구)

  • Kang, Kyung-Hee;Uhm, Dong-Choon;Nam, Eun-Sook
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.18 no.3
    • /
    • pp.424-435
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the disaster experience (accidents, education etc) and the concern for disaster preparedness of college students. Methods: This research design was a descriptive study. Data were collected from November 1, 2011 to December 30, 2011 and analyzed by the SPSS PASW statistics 18.0 program. Results: There were statistical significances in major (p<.050), grade(p<.001), and a completed disaster class(p<.001) between general characteristics and concern for disaster preparedness. The major disaster events that occurred from 2003 to 2010 in Korea were the 2007 Taean oil spill (85.4%), the 2003 Daegu subway fire (82.7%), and the 2008 Sungnyemun fire (62.9%). The possible disaster events in Korea were hurricanes, floods, fires (including wildfire), and the shutdown of communication lines. Subjects learned about cardiopulmonary resuscitation (18.2%), first aid for bleeding and fractures (17.8%), a fire drill (14.3%), and an escape drill for an earthquake (14.0%). They wanted to learn the fire drill (11.33%), the escape drill for an earthquake (9.7%), a war drill (9.0%), a disaster confrontation drill on the subway (8.6%), and a fire and explosion evacuation drill (8.4%). Half of subjects were not prepared with emergency supplies for disasters because they thought that a disaster would not occur. Conclusion: It is necessary to develop the disaster educational programs according to subject's demands in Korea.

Study on the Fire Safety Estimation for a Pilot LNG Storage Tank (PILOT LNG저장탱크의 화재안전성 평가에 관한 연구)

  • 고재선;김효
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.57-73
    • /
    • 2004
  • Quantitative safety analysis through a fault tree method has been conducted for a fire broken out over the spilling LNG from a pilot LNG tank, which may have 4 types of scenarios causing potentially risky results. When we consider LNG release from venting pipelines as a first event, any specific radius of Low Flammable Limit(LFL) has not been built up. The second case of LNG outflow from the rupture of storage tank which will be the severest has been analyzed and the results revealed various diffusion areas to the leaking times even with the same amount of LNG release. As a third case LNG leakage from the inlet/outlet pipelines was taken into consider. The results showed no significant differences of LFL radii between the two spilling times of 10 and 60 minutes. Hence, we have known the most affecting factor on the third scenario is an initial amount of LNG release. Finally, the extent of LFL was calculated when LNG pipelines around the dike area were damaged. In addition, consequence analysis has been also performed to acquire the heat radiation and flame magnitude for each case.

Analysis of Flame Shape in Flare Stack (플레어스택의 화염 형상 분석)

  • Lee, Heon-Seok;Kim, Bum-Su;Jung, Sang-Yong;Yoo, Jin-Hwan;Park, Chul-Hwan;Ko, Jae-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.49-53
    • /
    • 2009
  • Relief systems can improve the process safety because it has the function for the prevention of overpressure. Flare stacks is necessary to avoid explosion, radiation, or toxicity by waste-gas emitted from relief system. Safe combustion is one of the important factors to improve safety and the quantity and velocity emitted is ruled in the API code 521. Due to the pressure of released gas and mass flow, a flame from flare stack is similar to jet fire. In this study, we have investigated the effect of flame form on complete combustion and heat emission. API code was similar to jet fire model in flame length, the flame had an effect on the ground.

  • PDF