• Title/Summary/Keyword: Fire.explosion

Search Result 637, Processing Time 0.024 seconds

An Experimental Study on the Automobile Engine Room Fire Using the Extinguishing Agents (소화약제를 이용한 자동차 엔진룸 화재 실험에 관한 연구)

  • Han, Yong-Taek;Kim, Dong-Ho;Kwon, Sung-Pil
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • Several complex devices and equipments are installed in the car's engine room, including various kind of oils or other flammable materials. So re-ignition is very likely to take place in it. In addition, it is restrictive for the driver or the occupant to open the bonnet and to spray the fire extinguisher in the engine room due to the high possibility of explosion. Therefore, a fire extinguishing system, which can detect a fire and inject the fire extinguishing agent to extinguish it, and fire extinguishing agents including HFC-227ea, which can stand the high temperature within the engine room and hold the viscosity sufficient to keep it in the kind of foam, were developed and tested. And the suffocation effect and the cooling effect come from the fire extinguishing principle of the foam fire extinguishing agent and the inhibiter catalyst effect come from the one of HFC-227ea was led simultaneously, and fire extinguishing agents without the secondary damage caused by residuals after the fire extinguishment like a case of the powder fire extinguishing agent, were developed. And experiments using a vehicle collision after the discharge is complete, foreign material can be removed without extinguishing the advantage that experimental results obtained.

A Study on the Safety Distance of the Fuelling Facilities by the Radiation Heat in the Fire at the Gas Station (주유소 내 부대시설 화재발생시 복사열에 따른 주유설비 안전거리에 관한 연구)

  • Kim, Kisung;Lee, Sangwon;Song, Dongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.7-13
    • /
    • 2021
  • Various research has been done on fires and explosions at gas stations at home and abroad. However, only studies of off-site damage in the event of fire at the gas station were conducted, and research on fire at the auxiliary facilities in the gas station was insufficient. The gas station is a place where anyone can easily access dangerous goods. As the risk of fire increases due to the recent increase of auxiliary facilities such as convenience stores and car repair shops in gas stations, it is important to detect the effects of fire on the main oil refinery in case of fire and to verify the validity of existing regulations. In this thesis, we conducted a study to find out the effect of radiation heat on the separation between fixed and fixed oil reactors in the event of fire at an auxiliary facility. Simulation was modelled using FDS 5.5.3 Version, and the size of the fire source was configured with 13 fire assessment devices and the heat emission rate per unit area was entered. Simulation shows that the separation distance of 2 m does not secure the safety of the gas pump in the event of fire at the auxiliary facilities, and radiation heat does not damage at the separation distance of at least 4 m. Accordingly, facilities that can block radiant heat in the event of fire at auxiliary facilities, and measures to limit the use of auxiliary facilities or to re-impose the separation between buildings and fixtures will be needed.

폐목재 재활용 분진의 화재폭발위험성

  • Lee, Su-Hui;Han, U-Seop;Han, In-Su
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.115-115
    • /
    • 2013
  • 최근의 분진폭발은 플라스틱, 의약품, 목재, 곡물 저장고, 고체연료, 화학제품 제조공정 등을 포함하여 성형 및 가공 공정 등에서 화재폭발사고가 발생되고 있다. 폐목재를 재활용하여 PB(Particle board)를 생산하는 국내 제조사업장에서는 화재폭발 사고가 빈번히 발생하고 있어 예방대책이 요구되고 있다. 본 연구에서는 폐목재 제조공정의 사고예방과 목재분진 취급공정에 대한 안전대책 등을 제시하기 위하여 사고원인 물질인 폐목재 부유분진의 폭발특성실험을 실시하고 실험결과를 검토하였다. 또한 폐목재 분진의 화재폭발위험성을 상세히 평가하기 위하여 해당 물질의 자연발화점, 축열저장시험, 및 최소점화에너지 등의 화재폭발위험특성값을 실험적으로 조사하였다. 본 연구에서 사용한 폐목재 시료의 비구형 입자형태를 가지는데 입도분석기의 측정 결과 평균 입경은 $15.96{\mu}m$로 조사되었다. 또한 목재 분진의 함수율은 3.88%이며 중금속함유량은 1.73%이다. 자연발화점 측정결과 $225.5^{\circ}C$로서 비교적 낮게 측정되었고 퇴적분진에 대한 화재의 위험성은 높게 나타났다. 반면에 축열저장시험 결과를 통하여 공정관리 온도 및 보관온도를 $150^{\circ}C$ 이하로 관리하면 축열에 의한 자기분해 위험성은 낮은 것으로 판단되었다. 그러므로 축열에 의한 화재폭발 등의 위험성은 낮은 것으로 사료 된다. 최대폭발압력($P_{max}$)은 8.7 bar이며 폭발하한농도 (LEL)는 $60g/m^3$으로 나타났다. 부유분진의 폭발특성실험 결과 분진폭발지수(Kst)는 폭발등급 St 1 (0$bar{\cdot}m/s$)으로 나타났으며 폭발에 의한 위험성이 약한 분진으로 판정되었다. 최소점화에너지(MIE)는 10mJ < MIE <30mJ의 범위로 측정되었으며, 계산에 의해 추정된 최소점화 에너지(Es) 값은 14 mJ로서 일반적인 발화감도(Normal ignition sensitive)로 분류되었다. 이는 실질적인 점화원만 제거하여도 분진폭발을 예방할 수 있다는 것을 의미한다. 그러나 분진 폭발사고를 예방을 위하여 MIE값이 공정운전온도 $100^{\circ}C$ 초과 시에 급격히 낮아질 수 있으므로 운전 온도 설정에 있어서 주의가 필요하다.

  • PDF

Consequence Analysis for Release Scenario of Buried High Pressure Natural Gas Pipeline (지하매설 도시가스배관의 누출시나리오에 따른 사고피해영향분석)

  • Kim, Jin Hyung;Ko, Byung Seok;Yang, Jae Mo;Ko, Sang-Wook;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2014
  • Buried natural gas pipelines in densely populated urban areas have serious hazards of property damages and casualties generated by release, dispersion, fire and explosion of gas caused by outside or inside failures. So as to prevent any accident in advance, managers implement danger management based on quantitative risk analysis. In order to evaluate quantitative risk about buried natural gas pipelines, we need calculation for radiant heat and pressure wave caused by calculation for release rate of chemical material, dispersion analysis, fire or explosion modeling through consequence analysis in priority, in this paper, we carry out calculation for release rate of pressured natural gas, radiant heat of fireball based in accident scenario of actual "San Bruno" buried high pressured pipelines through models which CCPS, TNO provide and compare with an actual damage result.

A Study on Quantitative Risk Presentation of LNG Station (LNG충전시설의 위험도 표현에 관한 연구)

  • Ko, Jae-Wook;Yoo, Jin-Hwan;Kim, Bum-Su;Lee, Heon-Seok;Kim, Min-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • There are lots of energy facilities using gas(storage facility, compressed gas pipe, station, tank lorry) on the domestic. These major gas facilities cause major accidents associated with fire, explosion, toxic and etc. With the increased interest in reducing air pollution, supply of natural gas for gas vehicles is increasing. Thus, the number of establishments of LNG (Liquefied Natural Gas) and CNG(Compressed Natural Gas) stations is increasing as well. However, due to major gas accidents such as the fire and explosion accident of a Buchen LPG (Liquefied Petroleum Gas) station, it is difficult to establish a new station. In this research, we present quantitative risk assessment for LCNG;LNG multi-station and compare it result against individual risk criteria of HSE.

  • PDF

Risk Assessment of Submerged Floating Tunnels based on Fuzzy AHP (퍼지 AHP를 이용한 수중터널의 재해위험도 분석)

  • Han, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3244-3251
    • /
    • 2012
  • In the construction and operation of large marine structure, hazard risk analysis is one of important factors. Therefore, this paper investigates the hazard risk indexes and evaluates the risk level in the construction and operation of SFT on the basis of expert survey and Fuzzy analytic hierarchy process. Hazard risk is divided into natural hazard risk (earthquake, typhoon, tsunami, and ice collision) and human factor hazard risk (fire, explosion, traffic accident, ship or submarine collision). Also, the influence of hazard risk indexes on SFT was evaluated in tunnel tube, supporting system, ventilation tower, foundation, and connection part. As the hazard risk level of SFT is compared with those of bridge, underwater tunnel, and immersed tunnel, the intrinsic risk level of SFT was evaluated. Tsunami and earthquake had higher risk level in natural hazard risk, and the risk levels of fire and explosion were higher in human factor hazard risk. Hazard risk level of SFT was 1.4 times higher than immersed tunnel, and 3.2 times higher than bridge.

A Study on the Evaluation Model of Disaster Risks for Earthquake : Centering on the Cases of Cheongju City (지진에 대한 재해위험도 평가 모형에 관한 연구 - 청주시 사례 중심으로 -)

  • Jeong, Eui-Dam;Shin, Chang-Ho;Hwang, Hee-Yun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.67-73
    • /
    • 2010
  • Relatively high density of population and buildings exists in urban area mainly because of broad job opportunities and conveniences available. In other words, if happened, there might be high possibility of disaster which can not be easily recovered. The purpose of this study is to show evaluation approach of the risk degree resulted from the disaster, which considers the attributes of urban area. Cheongju-city in Chungcheongbuk-do is selected as sample district to be estimated. The degree of overall risk including fire risk, building collapse risk, evacuation risk and gas explosion risk etc. is analyzed in the designated area. The analysis suggests the highest risk degree in Bukmun-ro district which also shows CBD decline phenomenon. Therefore, it can be not only predicted that this area as old downtown has not been provided with disaster prevention operation and urban renewal project, but also judged that administrative assistances for the disaster are required possibly soon.

Design for a Fuse Element of Sub-miniature Fuse with High Breaking Capacity Characteristics (높은 차단용량 특성을 갖는 초소형 미니어처 퓨즈의 가용체 설계)

  • Ahn, Chang Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.131-137
    • /
    • 2017
  • In order to safely protect high over current flowing into the main circuit at short-circuit without any explosion or fire, the enclosed cartridge fuse with a high interrupting capacity should be applied. But this fuse is impossible to be applied to an inner electronic circuit because of a limited space problem result from the miniaturization trend of products. Therefore, it is necessary to apply a sub-miniature fuse with a relatively small size. However the semi-enclosed fuse which is more free for an influx of air than the enclosed cartridge fuse and is possible to protect fuse elements with chemical and physical combination can be adoptable. But it has a limit of implementing the characteristic of a high breaking capacity. For these reasons, the Fe-42wt%Ni fuse elements alloy and fuse-link with less space were designed to increase a breaking capacity of sub-miniature fuse and its safety for fire and explosion was confirmed in this paper.

A Study on Safety Policies for a Transition to a Hydrogen Economy (수소경제로의 이행을 위한 안전관리 정책 연구)

  • Jun, Daechun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • Hydrogen, which can be produced from abundant and widely distributed renewable energy resources, seems to be a promising candidate for solving the concerns for improving energy security, urban air pollution, and reducing greenhouse gas emissions. The two primary motivating factors for hydrogen economy are fossil fuel supply limitations and concerns about global warming. But the safety issues associated with hydrogen economy need to be investigated and fully understood before being considered as a future energy source. Limited operating experience with hydrogen energy systems in consumer environments is recognised as a significant barrier to the implementation of hydrogen economy. To prevent unnecessary restrictions on emerging codes, standards and local regulations, safety policies based on real hazards should be developed. This article studies briefly the direct impact-distances from hazard events such as hydrogen release and jet fire, and damage levels from hydrogen gas explosion in a confined space. Based on the direct impact-distances indicated in the accident scenarios and consumer environments in Korea, the safety policies, which are related to hydrogen filling station, hydrogen fuel cell car, portable fuel cell, domestic fuel cells, and hydrogen town, are suggested to implement hydrogen economy. To apply the safety policies and overcome the disadvantages of prescriptive risk management, which is setting guidance in great detail to management well known risk but is not covering unidentified risk, hybrid risk management model is also proposed.

A Study of the Evaluation of Combustion Properties of Tetralin (테트랄린의 연소특성치 평가에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.