• Title/Summary/Keyword: Fire-retardant

Search Result 264, Processing Time 0.025 seconds

Physical and Mechanical Properties and Fire-endurance Characteristics of Recycled Particleboards

  • Suh, Jin-Suk;Han, Tae-Hyung;Park, Joo-Saeng;Park, Jong-Young
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.475-486
    • /
    • 2008
  • In this study, fire-retardant chemicals were melt with mixed composition ratios of dibasic ammonium phosphate and each half of boric acid and borax in hot water, in which hammer-milled chips were immersed to increase swelling of waste particleboards. Also, fire-retardant treated particles from sawn lumber chip and recycled particleboard chip were composed in ratio of 70:30 in core layer to improve boards' properties. Retention ratio of fire-retardant chemicals for the particles for face layer was high due to high specific surface area, and that of sawn lumber chips was somewhat higher than that of recycled particleboard chips. The mixture of particles from sawn lumber chips and recycled PB of 70:30 in weight ratio exceeded bending strength of 100 $kgf/cm^2$. It seemed that the relatively greater portions of dibasic ammonium phosphate affected adversely to dimensional stability, however fire-retardants treatment resulted in distinct effect lowering formaldehyde emission such as $E_0$ type(0.5mg/$\ell$ or less) in KS F 3104. In fire-retardancy, the recycled boards with a mixed ratio of dibasic ammonium phosphate to boric acid borax(50:50 mixture) of 70% to 30% in weight satisfied fire-retardancy 3rd grade in KS F 2271, and also this composition from cone calorimeter test met same standard grade figuring total heat release of 4.6MJ/$m^2$.

  • PDF

Fire Performance of the Wood Treated with Inorganic Fire Retardants

  • Son, Dong-Won;Kang, Mee-Ran;Kim, Jong-In;Park, Sang-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.335-342
    • /
    • 2012
  • To prepare the eco-friendly fire retardant wood, Japanese red pine (Pinus densiflora), Hemlock (Tsuga heterophylla), and Radiata pine (Pinus radiata) were treated with inorganic chemicals, such as sodium silicate, boric acid, ammonium phosphate, and ammonium borate. Different combination and concentration of those chemicals were impregnated by vacuum/pressure treatment methods. The electron-beam treatment was used to increase the chemical penetration into the wood. The fire performance of the fire retardant treated wood was investigated. The penetration of chemicals into the wood was enhanced after electron beam treatment. Ignition time of the treated wood was the most effectively retarded by sodium silicate, ammonium phosphate, and ammonium borate. The most effective chemical combination was found at 50% sodium silicate and 3% ammonium borate, which satisfied flammability criteria for a fire retardant material in the KS F ISO 5660-1 standards.

A Study for the Fire Retardant-Characteristics of Expandable Graphite Composite Materials (팽창흑연을 사용한 복합재료의 난연 특성에 관한 연구)

  • Chun, Kwan-Ok;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.28-33
    • /
    • 2017
  • In this study, the composite material of expandable graphite was made to the material development for improving such as a composite material of the sandwich panels or material properties of a fire door and was tested by the ISO 1182, ISO 5660-1(Cone calorimeter Method). For the test, the composite material of expandable graphite, what the expandable graphite ratio was increased by respectively 0g~30g, was classified A1,A2, A3, A4, and made to the test specimens. Through cone calorimeter test, peak heat release rate(HRR) and total heat release(THR), expanded thickness and expansion rate of each composite material of expandable graphite, and fire prone crack and mass loss rate after burning was measured. Thus, the effect of the addition of the expandable graphite and whether is suitable for reference as a fire retardant, was analyzed. Consequently the correlation of THR and fire retardant performance rate was confirmed.

Research on Fire Safety of Mortar-Containing Waste Tire Powders and Flame Retardant (폐타이어 분말과 난연제가 혼입된 모르타르의 화재안전에 관한 연구)

  • Park, Jeong-Jin;Son, Ki-Sang
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • The purpose of this study is to determine how effectively waste tire recycled material mixed with flame retardant work in combating fire. As discovered in the previous study, waste tire mixed with cement mortar has more insulation capacity. However, this mortar is weak against fire. Therefore flame retardant, with a specific proportional mix, will be added to increase its fire prevention capacity. Tests will be made in accordance with ISO 5657 procedures for measuring fire ignition time, flame and shape variation of test pieces at the Building Material Test Institute. The test piece will be set up with horizontal levels having a constant radiation heat of $1{\sim}5W/cm^2$. Temperature transfers and increases from the surface into the interior. Combustible gases result due to pyrolysis, and regular contact is maintained between the fire source and the center of the test piece for assessment purposes. Ignition has not been occurred without adding retardant meaning that there is almost no possibility of ignition of waste tire particle. This fact can be considered as fire load to appreciate a volume of combustion materials. Flame is not occurred due to heat-absorbing effect by adding non-organic series retardant into waste tire particle. Conclusions have been summarized as follows; 1) Combustion of building material can be decreased by adding retardant to waste tire-mixing mortar. But compressive strength and insulation capacity of the material should be measured later. 2) Firing prevention and ignition are main points of building fire. Reasonable fire engineering assessment of interior material should be made for establishing effective disaster prevention system.

The Improvements for Fire Retardancy and Radiation Resistance of Chloroprene Rubber (클로로프렌 고무의 난연성 및 내방사선 특성 향상)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1205-1211
    • /
    • 2004
  • This study has investigated radiation degradation of chloroprene rubber in the presence of some fire retardant. Ammonium polyphosphate, aluminium trihydroxide, magnesium hydroxide, calcium carbonate and antimony trioxide were selected as flame retardant. Samples were irradiated using a Co$^{60}$ ${\gamma}$ -ray and ray up to 2000 kGy at a dose rate of 5 kGy/hr in the presence of air atmosphere at room temperature. After irradiation, samples were assessed fire retardancy with electrical properties and mechanical properties. Some considerations concerning the effects of the fire retardants added to chloroprene rubber on the radiation and thermal stability of chloroprene rubber are presented. From fire retardancy with electrical and mechanical property measurements, it was found that addition of magnesium hydroxide resulted in maximum fire retardant effect.

A Study on Combustion Characteristics of Fire Retardant Treated Wood (난연처리된 목재의 연소특성에 관한 연구)

  • Park, Hyung-Ju;Kang, Young-Goo;Kim, Hong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.4 s.132
    • /
    • pp.38-44
    • /
    • 2005
  • This study was carried out to investigate the combustion characteristics of flame retardant treated wood by water-soluble flame retardants which are made from mixture of aqueous solution of monoammonium phosphate, sodium borate and zinc borate. The combustion characteristics for flame retardant treated wood were carried out using thermal analysis (TGA, combustion heat) and flame retardant test (LOI, flame propagation). The results of thermal analysis and flame retardant test are as follows; 1) The sample treated by F4 showed excellent flame retardant effects in almost all of combustion characteristics. 2) From TGA curves, all the samples undergo pyrolysis and oxidation in two main discrete steps. 3) The effect of flame retardant for softwood is higher than those for hardwood, and the combustion heat has decreased with increase of the content of flame retardant. 4) LOI values are almost similar in flame retardant treated wood samples. The range of LOI is from 24 to 30. However, these values are much higher than LOI value of non-treated wood sample. 5) The blended aqueous solution had a final in the range of about pH 8.4, and a slight odor of ammonia.

Experimental Study of Fire Characteristics of a Tray Flame Retardant Cable (트레이용 난연 전력 케이블의 화재특성에 관한 실험적 연구)

  • Kim, Sung Chan;Kim, Jung Yong;Bang, Kyoung Sik
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.39-43
    • /
    • 2013
  • The present study has been conducted to investigate the fire combustion properties and fire behavior of an IEEE-383 qualified flame retardant cable. The reference reaction rate and reference temperature which are commonly used in pyrolysis model of fire propagation process was obtained by the thermo-gravimetric analysis of the cable component materials. The mass fraction of FR-PVC sheath abruptly decreased near temperature range of $250{\sim}260^{\circ}C$ and its maximum reaction rate was about $2.58{\times}10^{-3}$[1/s]. For the XLPE insulation of the cable, the temperature causing maximum mass fraction change was ranged about $380{\sim}390^{\circ}C$ and it has reached to the maximum reaction rate of $5.10{\times}10^{-3}$[1/s]. The flame retardant cable was burned by a pilot flame meker buner and the burning behavior of the cable was observed during the fire test. Heat release rate of the flame retardant cable was measured by a laboratory scale oxygen consumption calorimeter and the mass loss rate of the cable was calculated by the measured cable mass during the burning test. The representative value of the effective heat of combustion was evaluated by the total released energy integrated by the measured heat release rate and burned mass. This study can contribute to study the electric cable fire and provide the pyrolysis properties for the computational modeling.

A Study on the Flame Resistance and Combustion Characteristics of MDF Plywood (MDF합판의 방염 및 연소특성에 관한 연구)

  • Kim, In-Beom
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.256-260
    • /
    • 2014
  • Interior of the building is used as a MDF plywood if there is a fire in order to delay the ignition, flame retardant paint, flame retardant solution and flame retardant film are being handled by the flame retardant. Combustion characteristics anf flame retardant performance results can be summarized as follows: General film with a sample showed that short of the criteria in terms of carbonation area, and the results of flame retardant paint, flame retardant solution and flame retardant film products satisfied the criteria. Toxic gases generated in the combustion process results in a film samples using a high incidence of carbon monoxide and the creation of a smoke could be seen. This confirm that is estimated that result from incomplete combustion of PVC film that attach, and displays high toxicity index and hazard class relatively.

Effects of Fire Retardant Treatment on Mechanical Properties and Fire Retardancy of Particleboard and Complyboard (내화처리(耐火處理)가 파아티클보오드와 콤플라이보오드의 기계적성질(機械的性質) 및 내화도(耐火度)에 미치는 영향(影響))

  • Kwon, Jin-Heon;Lee, Phll-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.3-57
    • /
    • 1985
  • This research was conducted to examine the feasibility of developing fire retardant particleboard and complyboard. Particleboard were manufactured using meranti particle(Shorea spp.)made with Pallmann chipper, and complyboard meranti particle and apitong veneer (Dipterocarpus spp.). Particles were passed through 4mm (6 mesh) and retained on 1mm (25 mesh). Urea formaldehyde resin was added 10 percent on ovendry weight of particle. Face veneer for complyboard was 0.9, 1.6 and 2.3mm in thickness and spread with 36 g/(30.48 cm)$^2$ glue on one side. Veneers were soaked with 10 percent solution of five fire retardant chemicals (diammonium phosphate, ammonium sulfate, monoammonium phosphate, Pyresote and Minalith), and particles with 5, 10, 15 and 20 percent solution of five chemicals. Particleboard and complyboard were evaluated on physical and mechanical properties, and fire retardancy. The results obtained were summarized as follows. 1. Among five fire retardant chemicals treated to particleboard and complyboard, the retention of ammonium sulfate in 5 percent solution showed the lowest as 1.39 kg/(30.48 cm)$^3$ exceeding the minimum retention of 1.125 kg/(30.48 cm)$^3$ recommended by Forest Products Laboratory and Koch. 2. Particleboard and complyboard treated with diammonium phosphate showed higher modulus of rupture (MOR), modulus of elasticity (MOE), internal bond strength and screw holding power than those with the other chemicals. 3. MOR and MOE of complyboard treated with fire retardant chemicals were greater than those of fire retardant particleboard. 4. Thickness swelling of fire retardant complyboard was lower than that of fire retardant particleboard. 5. The moisture content of the boards treated with Pyresote and Minalith increased and with monoammonium phosphate reduced. 6. Fire retardant particleboard showed no ignition, and fire retardant complyboard started ignition, but time required to ignite was prolonged comparing the controlboard. Complyboard with only shell veneer treated showed ignition and lingering flame, but lingering flame time was shorter than controlboard. Complyboard with treated both core and veneer showed ignition but not lingering flame. 7. Flame length, carbonized area and weight loss were smaller than controlboard but had no significant difference among chemicals treated. 8. Temperature of unexposed surface of fire retardant particleboard was lowered with the increasing concentration of five chemicals. 9. Temperature of unexposed surface of fire retardant particleboard was lowered with the highest in Pyresote and the lowest in Minalith. 10. Temperature of unexposed surface of fire retardant complyboard was lower than that of controlboard.

  • PDF

A Study on the Smoke Hazard Increase of Flame-retardant-treated Interior Decorative Textile -Focused on Viscose Rayon Textile Wallcovering- (난연 처리된 실내장식섬유의 연기 위해성 증가에 관한 연구 -비스코스 레이온 섬유 벽지를 중심으로-)

  • Lee, Joonhan;Kim, Sun Mee
    • Journal of Fashion Business
    • /
    • v.24 no.3
    • /
    • pp.30-39
    • /
    • 2020
  • This study was conducted to identify problems in domestic flame-retardant performance specifications. Currently, the domestic wallcovering anti-inflammatory regulations are not prepared for damage caused by smoke, with the carbonized area as the main function. In particular, given that smoke is the main cause of human casualties and injuries in a fire, it is reasonable that the flame density and toxicity of the wallcovering should also be the main performance indicators. The scope and method of research in this study were as follows. First, a prior study related to fire on various wallcoverings was considered. Second, it raised questions about the effects of smoke in the event of a fire and domestic anti-inflammatory performance tests. Third, textile wallcovering samples were manufactured with viscose rayon for experimental verification of the problems and tested by Korean and EU standards without flame retardant processing to analyze the differences between each regulation. Fourth, the performance of flame retardant wallcovering according to Korean standards was evaluated using smoke density and harmful gas testing methods. The results of each test were as follows. Non-fire retardant wallcovering was rejected by Korea standards. However, B-s1.d0 in Europe. Smoke density testing and harmful gas by domestic combustion processing on the same sample showed that the smoke density increased about 4.3 times more than before, and the harmful gas test showed that the suspension of the post-processing sample slowed earlier than the non-processed sample.