• Title/Summary/Keyword: Fire-resistance-structure

Search Result 206, Processing Time 0.026 seconds

An Examining and Analyzing Study on the Fire Resistance Design for Immersed Tunnels (침매터널 내화설계에 관한 조사 분석적 연구)

  • Lee, Young-Jae;Kim, Heung-Youl;Shin, Hyun-Jun;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.507-512
    • /
    • 2008
  • Recently, Busan-Geoje fixed Link Immersed Tunnel and the Tokyo Port Waterway 2 Submarine Tunnel have been constructing. Furthermore it was mentioned to construct an immersed tunnel from Korea to Japan. As a result, it is expected that the demand to use the immersed tunnel will be increased. However, if a fire occurs in the immersed tunnels, it will damage tunnel elements and not save human lives more seriously than normal tunnels on the ground because of the absence of exits as well as closing structure of the immersed tunnels. In fact, the fire accident in the Eurotunnel which connects between France and the Unite Kingdom through the immersed tunnel had occurred twice in 1996 and 2008, and the inner surface of the tunnel got damaged such as concrete popout and structural damage. As a result, not only economic injury but enormous expense to repair and reinforce the tunnel were derived because of the suspension of traffic after the fire happened. Now, from the examining and analyzing study on the fire resistance of immersed tunnels in developed countries and Busan-Geoje fixed Link Immersed Tunnel, we suggest the establishment method of fire resistance to insure the fire safety of immersed tunnel.

  • PDF

A Study on the Prediction of Residual Strength of Concrete Filled Steel Tube Column without Fire Protective Coating by Unstressed Heating (비재하 가열에 의한 무내화피복 CFT 기둥의 잔존내력 예측에 관한 연구)

  • Kim, Gyu-Yong;Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Kang, Sun-Jong
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2009
  • Recently, fire resistance in high-rise building is becoming major problem socially. So it is need of hour to study on fire resistance in buildings. This study estimates fire resistance performance to utilized CFT (Concrete filled steel tube, below CFT) column in the high structure. But it is difficult quantitative evaluation about fire resistant performance of CFT. Therefore, this study made CFT specimen that determine the factor which is strength of concrete and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, tried to analyze internal temperature through nonlinear transient heat flow analysis. And, presumed extant compressive strength on the basis of this.

Numerical study on the post-earthquake fire behavior of intermediate steel moment frames

  • Parvizizadeh, Shayan;Kazemi, Mohammad Taghi
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.137-145
    • /
    • 2022
  • As steel is highly sensitive to temperature variations, fire exposure is more destructive in the case of steel structures in comparison to the concrete ones. The performance of an intermediate three-story steel moment frame with 4 spans was studied under the service load, thermal load and post-earthquake fire in this paper. Also, the effects of passive fire-protection materials such as ordinary cement-based and fire-retardant coatings were investigated. To model and analyze the structure; Abaqus software is utilized. In order to apply the earthquake effect, the push-over analysis method is employed. Changes in the stories deflection, endurance time and growth of nonlinear regions due to losses in the steel stiffness and strength, are among the issues considered in this study. As an interesting finding, the beams protected by ordinary cement-based coating could sustain the fire exposure at least for 30 minutes in all cases. The mentioned time is increased by employing a new fire-retardant protection, which could prevent significant loss in the structure resistance against fire, even after 60 minutes of exposure to fire.

An Experimental Study on the Mechanical Properties of Ductile Outline Form and Fire Resistance of High Strength RC Column (고인성 외곽 거푸집의 역학성능 및 이를 활용한 고강도 RC기둥의 내화성능에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Kim, Jae-Hwan;Kim, Yong-Ro;Kim, Wook-Jong;Kwon, Young-Jin;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.199-203
    • /
    • 2008
  • With recent trend in domestic and global market requiring architectures' conversion into skyscrapers seasoned with the features of landmarks, structural problems in relation with explosive spatting during fire emergencies are arising as controversial issues. Accordingly, many productive researches have been made in relation to the reinforcement techniques for improving fire resistance and the number of applications in the field is gradually increasing. In this study, a ductile outline form using ECC (Engineered Cementations Composites) was made with improvements on the structure and fire resistance to examine its applicability. Also, currently in Japan, the number of studies and applications is increasing focusing on reduction of construction time and improvement of workability with application of Half-PCa method. However, using such method of construction, large structural members decrease the utilization of space and architecture-wise, there is a disadvantage of the weight increase. Therefore, in such context, it would be worth reducing the weight of the structural members by reducing the size using ECC. In addition, its excellent pseudo strain-hardening due to fiber may have great effects on seismic designs. In the mean time, this study planned 3 equal conditions for mix water, PVA fiber and additives excluding binder and refractory to evaluate the mechanical properties of resistance against pressure and internal force. Finally, an evaluation was executed on the fire resistance of the newly made ductile outline form. As a result, from ECC-I to ECC-III, all showed excellent mechanical properties due to pseudo strain-hardening and in the fire resistance test conducted with ISO 834 heating curve, most of them tended to be in the range of the reference temperature (538℃-180min), so there was no occurrence of any explosive spatting.

  • PDF

Optimum Design on Fire Resistance of Gas Cylinder Cabinets using Thermal Analysis (열해석을 이용한 가스 실린더 캐비닛의 내화성능 최적설계)

  • Nam, Minseo;Kim, Jiyu;Kim, Euisoo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Gas cylinder cabinets have risks such as cylinder explosion and scattering of debris when a fire occurs. These risks are likely to cause gas spills and cause secondary damage. In order to reduce damage, it is very important to secure the fire resistance performance of the gas cylinder cabinet. In foreign countries, NFPA codes in the United States and EN-14470-2 in Europe stipulate fire resistance test standards for gas cylinder cabinets to protect internal cylinders for a certain period of time in a situation where gas cylinder cabinets are exposed to flames. However, in Korea, only internal pressure performance and airtight performance standards are specified, and the target is limited to piping, and research and regulations for the fire resistance performance of gas cylinder cabinets are insufficient compared to overseas. Therefore, in this study, finite element analysis was used to establish fire resistance standards for domestic gas cylinder cabinets. In the event of a fire, optimal conditions are derived in terms of structure and material.

An Experimental Study on the Application of Fireproof Panel in Tunnel Duct Slab (터널 풍도슬라브에 사용된 내화패널의 적용성에 관한 실험연구)

  • Woo Jin Choi
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.262-269
    • /
    • 2023
  • Purpose: In this study,fire-resistance test were executed to evaluate the effectiveness of the fireproof panel attached to the PSC slab in tunnel. Method: For the fire resistance test, the RWS curve was applied and the furnace of the KICT was used. Result: As a result of the experiment, the maximum temperature measured on the concrete surface of the PSC slab with the fireproof panel was 321.8℃, which was lower than the damage limit temperature of 380℃ for concrete. Also, at the t=25mm, the maximum temperature was 35.2℃, which was lower than the damage temperature of steel, 250℃. The use of precast fire resistance panel(t=30mm) improves fire resistance of PSC structures. Conclusion: As a result of the test, a reinforcement method for attached a fireproof panel in case of fire in a tunnel or an underground roadway is provided to protect a structure from fire. In the future, it is necessary to perform the static performance test of the slab to which the fireproof panel is attached, and to confirm the adhesion performance of the fireproof panel by performing the pull-off test and the fatigue test.

Strategy of Fire Precaution for High Rise Buildings (긴급제언: 고층건물의 화재예방대책)

  • Hwang, Hyun-Soo
    • Journal of the Korean Professional Engineers Association
    • /
    • v.43 no.6
    • /
    • pp.35-38
    • /
    • 2010
  • The reports presents fire and life safety enhancements such as area of refuges, occupant evacuation elevators, fire resistance structure and etc that the high rise buildings other than general buildings should be applied. These enhancements is proposed for the high rise buildings in order to egress efficiently and safely.

  • PDF

The Characteristics of Mechanical Properties and Fatigue Crack Propagation of Fire Resistance Steel for Frame Structure (구조용 내화강의 기계적 성질과 피로균열전파 특성에 관한 연구)

  • Kim, Hyeon-Su;Nam, Gi-U;Gang, Chang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • This study is to investigate the mechanical properties and the fatigue crack propagation of fire resistance steel for frame structure as the chemical composition was changed by addition of N, B and rolled end temperature was varied. We used two kinds of specimen, the one is parallel and the other is perpendicular to the rolling directions. As rolled end temperature increased, volume fraction of ferrite and pearlite decreased, but volume fraction of baintie and grain size increased. Micro-hardness decreased as rolled end temperature increased, but tensile and yield strength increased. Volume fraction of ferrite and pearlite decreased by addition of N. But volume fraction of bainite, tensile and yield strength increased. Microstructure was changed to martensite by addition of B, and tensile and yield strength increased. Fatigue life of TL direction specimen was shorter than that of LT direction specimen. There was no significant effect to fatigue crack propagation rate by addition of N and changing rolling condition, but fatigue life was increased by addition of B.

On the Chinese Code on fire safety design of steel building structures

  • Li, G.Q.;Guo, S.X.;Jiang, S.C.
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.395-405
    • /
    • 2005
  • This work introduces to the international scientific community the Chinese Code on fire safety design of steel building structures. The aim of the Code is to prevent the structure of a steel building subjected to fire from collapsing, ensure safe evacuation of building occupants, and reduce the cost for repairing the damages of the structure caused by fire. The main contents of the Code is presented in this paper, including the fire duration requirements of structural components, fundamental requirements on fire safety design of steel components, temperature increasing of atmosphere and components in fire, loading effect and capacity of various components in fire, and procedure for fire-resistant design of steel components. The analytical approach is employed in the Code and the effectiveness of the Code is validated through experiments.

A Study on the Shape of Beam Attached CFT inner-side for Developing Column's Performance (콘크리트충전 강관기둥의 성능향상을 위한 내면부착 beam의 형상 연구)

  • Lee, Dong-Un;Yun, Hyug-Gee;Kim, Dea-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.21-22
    • /
    • 2015
  • The CFT(Concrete Filled Tube) system has been developed to behave well in a structural performance such as stiffness, stress, ductility, fire resistance that is derived from its mechanical advantages of composite structure. There were number of studies about unprotected CFT columns for improving their fire resistance through reinforcing bars or plates being placed inside the steel tube. It was also known that reinforcing plates of flat type need stiffeners in a certain distance to avoid their buckling failure so it cost as much as their using consequentially. This paper is planned to test the work of beam elements attached inner side of CFT depending on its shape. More discussions on beam's design could be followed after some fire tests accordingly conducted within this project.

  • PDF